Chapter 3

Gate-Level Minimization

3.1

INTRODUCTION

Gate-level minimization refers to the design task of finding an optimal gate-level imple-
mentation of the Boolean functions describing a digital circuit. This task is well under-
stood, but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean
equations efficiently and quickly. Nevertheless, it is important that a designer understand
the underlying mathematical description and solution of the problem. This chapter serves
as a foundation for your understanding of that important topic and will enable you to exe-
cute a manual design of simple circuits, preparing you for skilled use of modern design
tools. The chapter will also introduce a hardware description language that is used by mod-
ern design tools.

3.2 THE MAP METHOD

70

The complexity of the digital logic gates that implement a Boolean function is directly related
to the complexity of the algebraic expression from which the function is implemented. Al-
though the truth table representation of a function is unique, when it is expressed algebraically
it can appear in many different, but equivalent, forms. Boolean expressions may be simplified
by algebraic means as discussed in Section 2.4. However, this procedure of minimization is awk-
ward because it lacks specific rules to predict each succeeding step in the manipulative process.
The map method presented here provides a simple, straightforward procedure for minimizing
Boolean functions. This method may be regarded as a pictorial form of a truth table. The map
method is also known as the Karnaugh map or K-map.

Section 3.2 The Map Method n

A K-map is a diagram made up of squares, with each square representing one minterm of
the function that is to be minimized. Since any Boolean function can be expressed as a sum of
minterms, it follows that a Boolean function is recognized graphically in the map from the
area enclosed by those squares whose minterms are included in the function. In fact, the map
presents a visual diagram of all possible ways a function may be expressed in standard form.
By recognizing various patterns. the user can derive alternative algebraic expressions for the
same function, from which the simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic ex-
pression is an algebraic expression with a minimum number of terms and with the smallest
possible number of literals in each term. This expression produces a circuit diagram with a
minimum number of gates and the minimum number of inputs to each gate. We will see sub-
sequently that the simplest expression is not unique: It is sometimes possible to find two or more
expressions that satisfy the minimization criteria, In that case, either solution is satistactory,

Two-Variable Map

The two-variable map is shown in Fig, 3.1(a). There are four minterms for two variables; hence,
the map consists of four squares, one for each minterm. The map is redrawn in (b) to show the
relationship between the squares and the two variables x and y. The 0 and 1 marked in each row
and column designate the values of variables. Variable x appears primed in row 0 and unprimed
in row 1. Similarly. v appears primed in column 0 and unprimed in column 1.

¥

¥ —_—
b5 0 X
",]
L my 0] xi¥ x'y
m. .
niy s el ay Xy
(a) (b)

FIGURE 3.1
Two-variable map

If we mark the squares whose minterms belong to a given function, the two-variable map
becomes another useful way to represent any one of the 16 Boolean functions of two variables.
As an example, the function xy is shown in Fig. 3.2(a), Since xy is equal to mj3, a | is placed
inside the square that belongs to mj. Similarly, the function x + y is represented in the map
of Fig. 3.2(b) by three squares marked with 1's. These squares are found from the minterms of
the function:

nmp+my+my=xy+ay +axy=x+y
The three squares could also have been determined from the intersection of variable x in the

second row and variable y in the second column, which encloses the area belonging to x or v,
In each example, the minterms at which the function is asserted are marked with a 1.

72 Chapter 3 Gate-Level Minimization

y ¥
y A] e,
* 0 1 x . 0 1
my my my
0 0
. my L
x1q1 1 X1 1
-3
{a) xy (byx+y

FIGURE 3.2
Representation of functions in the map

yz p—— i A
X 00 01 11 10
my m; My m,
iy m sy ny 0)x'y'z' | x'y'z | x'yz | x'yz’
my my iy ny
an nis ms mg Xq1lay'z' | av'z | xyz | vz’
—r—
4

(a) (b)

FIGURE 3.3
Three-variable map

Three-Variable Map

A three-variable map is shown in Fig. 3.3. There are eight minterms for three binary variables;
therefore, the map consists of eight squares. Note that the minterms are arranged. not in a bi-
nary sequence, but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbers in each row and each column to show the relation-
ship between the squares and the three variables. For example, the square assigned to ms cor-
responds to row 1 and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5. Each cell of the map corresponds to a
unique minterm, so another way of looking at square ms = xy'z is to consider it to be in the
row marked x and the column belonging to y'z (column 01). Note that there are four squares
in which each variable is equal to 1 and four in which each is equal to 0. The variable appears
unprimed in the former four squares and primed in the latter. For convenience, we write the vari-
able with its letter symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must recog-
nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif-
fer by only one variable, which is primed in one square and unprimed in the other, For example,
ms and m lie in two adjacent squares. Variable y is primed in ms and unprimed in m4, where-
as the other two variables are the same in both squares. From the postulates of Boolean algebra,
it follows that the sum of two minterms in adjacent squares can be simplified to a single AND

Section 3.2 The Map Method 73

term consisting of only two literals. To clarify this concept, consider the sum of two adjacent
squares such as ms and my:

ms + my = xy'z+xyz=xx(y' +y) =12z
Here. the two squares differ by the variable y. which can be removed when the sum of the two
minterms is formed. Thus, any two minterms in adjacent squares (vertically or horizontally, but
not diagonally, adjacent) that are ORed together will cause a removal of the dissimilar variable.
The next four examples explain the procedure for minimizing a Boolean function with a map.

EXAMPLE 3.1

Simplify the Boolean function

Flx,v.z) = £(2.3,4.5)

First, a 1 is marked in each minterm that represents the function. This is shown in Fig. 3.4, in
which the squares for minterms 010, 011, 100, and 101 are marked with 1's. The next step is
to find possible adjacent squares, These are indicated in the map by two rectangles, each en-
closing two 1's, The upper right rectangle represents the area enclosed by x'y. This area is de-
termined by observing that the two-square area is in row (), corresponding to x’, and the last
two columns, corresponding to y. Similarly, the lower left rectangle represents the product
term xyv'. (The second row represents x and the two left columns represent y'.) The logical
sum of these two product terms gives the simplified expression

F=xy+xy

", m LY L. /(

FIGURE 3.4
Map for Example 3.1, F(x, y, 2) = £(2,3,4,5) = x'y + ay

In certain cases. two squares in the map are considered to be adjacent even though they do
not touch each other. In Fig. 3.3, my is adjacent to m, and my is adjacent to mg because the
minterms differ by one variable. This difference can be readily verified algebraically:

mg + my = x'y'z' + x'v! = X'y +y) =22

my+mg=xyz'+xyz'=x" + (¥ +y) =7

Consequently. we must modify the definition of adjacent squares to include this and other sim-
ilar cases. We do so by considering the map as being drawn on a surface in which the right and
left edges touch each other to form adjacent squares.

74 Chapter 3 Gate-Level Minimization

EXAMPLE 3.2

Simplify the Boolean function
F(x,y.z) = 2(3,4,6,7)

The map for this function is shown in Fig. 3.5. There are four squares marked with 1's, one
for each minterm of the function. Two adjacent squares are combined in the third column to
give a two-literal term yz. The remaining two squares with 1's are also adjacent by the new
definition. These two squares, when combined, give the two-literal term xz'. The simplified
function then becomes

Note: xy'z" + xyz' = xz'

FIGURE 3.5
Map for Example 3.2, F(x, y, z) = 2(3,4,6,7) = yz + xz'

Consider now any combination of four adjacent squares in the three-variable map. Any such
combination represents the logical sum of four minterms and results in an expression with only
one literal. As an example, the logical sum of the four adjacent minterms 0, 2, 4, and 6 reduces
to the single literal term z':

x'y'z' + x'yz' + xy'2" + xyz'
Xy +y) + 2 +y)

=x+x=(x"+x)=2

I

mg + my + my + mg

Il

The number of adjacent squares that may be combined must always represent a number
that is a power of two, such as 1, 2, 4, and 8. As more adjacent squares are combined, we ob-
tain a product term with fewer literals.

One square represents one minterm, giving a term with three literals.
Two adjacent squares represent a term with two literals.
Four adjacent squares represent a term with one literal.

Eight adjacent squares encompass the entire map and produce a function that is always
equal to 1.

Section 3.2 The Map Method 75

EXAMPLE 3.3

Simplify the Boolean function

F(x,v,z) = 2£(0.2,4.5.6)
The map for F is shown in Fig. 3.6, First, we combine the four adjacent squares in the first and
last columns to give the single literal term z'. The remaining single square, representing minterm
5. is combined with an adjacent square that has already been used once. This is not only per-

missible, but rather desirable, because the two adjacent squares give the two-literal term xy’
and the single square represents the three-literal minterm xyv'z. The simplified function is

F=72+xy

Nore:y'z' +yv2'=7'

FIGURE 3.6
Map for Example 3.3, F(x, y, 2) = (0,2, 4,5,6) = 2’ + xy

If a function is not expressed in sum-of-minterms form., it is possible to use the map to ob-
tain the minterms of the function and then simplify the function to an expression with a mini-
mum number of terms. It is necessary, however, to make sure that the algebraic expression is
in sum-of-products form. Each product term can be plotted in the map in one, two, or more
squares. The minterms of the function are then read directly from the map.

EXAMPLE 3.4
Let the Boolean function
F=AC+ A'B+ AB'C + BC
(a) Express this function as a sum of minterms.
(b) Find the minimal sum-of-products expression.

Three product terms in the expression have two literals and are represented in a three-variable
map by two squares each. The two squares corresponding to the first term, A'C, are found in
Fig. 3.7 from the coincidence of A’ (first row) and C (two middle columns) to give squares 001

76 Chapter 3 Gate-Level Minimization

my

FIGURE 3.7
Map for Example 3.4, A'C + A’'B+ AB'C + BC=C+ A'B

and 011. Note that, in marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A’B, which has 1's in squares 011
and 010. Square 011 is common with the first term, A'C, though, so only one 1 is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101, corre-
sponding to minterm 5, and the term BC has two 1's in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1's in the map of Fig. 3.7. The minterms are
read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum-of-
minterms form as

F(A,B,C) = £(1,2,3,5,7)

The sum-of-products expression, as originally given, has too many terms. It can be simplified,
as shown in the map, to an expression with only two terms:

F=C-+ A'B

3.3 FOUR-VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3.8, In (a) are listed
the 16 minterms and the squares assigned to each. In (b), the map is redrawn to show the re-
lationship between the squares and the four variables. The rows and columns are numbered in
a Gray code sequence. with only one digit changing value between two adjacent rows or
columns. The minterm corresponding to each square can be obtained from the concatenation
of the row number with the column number. For example, the numbers of the third row (11)
and the second column (01), when concatenated, give the binary number 1101, the binary
equivalent of decimal 13. Thus, the square in the third row and second column represents
minterm m; 5.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges, as
well as the right and left edges, touching each other to form adjacent squares. For example,

Section 3.3 Four-Variable Map 77

y
N4
W 00 01 11 10
"y m i, me
my ny m; s 00 pw'x'vz'wix'v'z | wix'vz |wix'yz’
o, i, . iy,
my my my mg 01 | wiay'z" | wiay'z | wixyz | wiayz'
) myy My my =
myy 3 myg iy 1| way'z’ | way'z | wxyz | wxyz’
w m, "y, "y, my,
"y ny nyy my 10 wa'y'z" | wa'y'z | wx'yz | wx'yz’
—_—
2
(a) (b)

FIGURE 3.8
Four-variable map

mq and m; form adjacent squares, as do m3 and m ;. The combination of adjacent squares that
is useful during the simplification process is easily determined from inspection of the four-
variable map:

One square represents one minterm, giving a term with four literals.
Two adjacent squares represent a term with three literals.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that is always equal to 1.

No other combination of squares can simplify the function. The next two examples show
the procedure used to simplify four-variable Boolean functions.

EXAMPLE 3.5

Simplify the Boolean function

Flw, x.v.2) = £(0,1,2,4,5.6,8,9, 12,13, 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by 1's in the map of Fig. 3.9. Eight adjacent squares marked with 1's
can be combined to form the one literal term y'. The remaining three 1's on the right cannot
be combined to give a simplified term; they must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller is the number of literals in the term,
In this example, the top two 1's on the right are combined with the top two 1's on the left to
give the term w'z". Note that it is permissible to use the same square more than once. We are

78 Chapter 3 Gate-Level Minimization

¥z —
“’\ 00 11 10

Pyl

w'y'z

11"‘\".":'

My

xvz'

y, my,

Note: w'y'z' + w'yvz' = w'z’
wz vy =xr

FIGURE 3.9
Map for Example 3.5, F(w, x, ¥, z) = 2(0,1,2,4,5,6,8,9, 12,13, 14) =
y +wz' + xz'

now left with a square marked by | in the third row and fourth column (square 1110). Instead
of taking this square alone (which will give a term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middle rows and the two end columns, giving the term xz’. The simplified function is

F=yi+wjzl +xzr

EXAMPLE 3.6

Simplify the Boolean function
F=AB'C' + B'CD'"+ A'BCD’ + AB'C’

The area in the map covered by this function consists of the squares marked with 1's in Fig. 3.10.
The function has four variables and, as expressed, consists of three terms with three literals each
and one term with four literals. Each term with three literals is represented in the map by two
squares. For example, A'B'C" is represented in squares 0000 and 0001. The function can be sim-
plified in the map by taking the 1’s in the four corners to give the term B'D’. This is possible
because these four squares are adjacent when the map is drawn in a surface with top and bot-
tom edges, as well as left and right edges, touching one another. The two left-hand 1’s in the top
row are combined with the two 1°s in the bottom row to give the term B'C’, The remaining 1
may be combined in a two-square area to give the term A'CD’. The simplified function is

F=B'D + BC' + A'CD’

Section 3.3 Four-Variable Map 79

ABCD
A'B'CD’
ny my ms my
o i A
D o —
L iy mis i, B
1n
A
AB'C'D’

Now: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D’ + AB'CD' = AB'D'
A'B'D' — AB'D' = B'D'
A'B'C' - AB'C' = B'C'
FIGURE 3.10
Map for Example 3.6, A’B'C" + B'CD" + A’BCD’ + AB'C' = B'D’ + B'C’ + A’CD’

Prime Implicants

In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the func-
tion are covered when we combine the squares, (2) the number of terms in the expression is
minimized, and (3) there are no redundant terms (i.e., minterms already covered by other terms).
Sometimes there may be two or more expressions that satisfy the simplification criteria, The
procedure for combining squares in the map may be made more systematic if we understand
the meaning of two special types of terms. A prime implicant is a product term obtained by com-
bining the maximum possible number of adjacent squares in the map. If a minterm in a square
is covered by only one prime implicant, that prime implicant is said to be essential.

The prime implicants of a function can be obtained from the map by combining all possi-
ble maximum numbers of squares. This means that a single 1 on a map represents a prime im-
plicant if it is not adjacent 1o any other 1's. Two adjacent 1°s form a prime implicant, provided
that they are not within a group of four adjacent squares, Four adjacent |’s form a prime im-
plicant if they are not within a group of eight adjacent squares, and so on. The essential prime
implicants are found by looking at each square marked with a 1 and checking the number of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Consider the following four-variable Boolean function:

F(A,B.C.D) = £(0.2,3,5.7.8,9,10, 11,13, 15)

The minterms of the function are marked with 1's in the maps of Fig. 3.11. The partial map (part
(a) of the figure) shows 1wo essential prime implicants, each formed by collapsing four cells into
a term having only two literals. One term is essential because there is only one way to include

80 Chapter 3 Gate-Level Minimization

A'B'C'D’

BD

AB'C'D'

B'C

My

My "y y My

AB'CD'
Note: A'B'C'D" + A'B'CD' = A'B'D’
AB'C'D' + AB'CD' = AB'D'
A'B'D'+ AB'D' = B'D'
(a) Essential prime implicants (b) Prime implicants CD, B'C,
BD and B'D' AD,and AB'

FIGURE 3.11
Simplification using prime implicants

minterm m within four adjacent squares. These four squares define the term B'D’. Similarly,
there is only one way that minterm m5 can be combined with four adjacent squares, and this gives
the second term BD. The two essential prime implicants cover eight minterms. The three minterms
that were omitted from the partial map (m3, mq, and m; ;) must be considered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with prime.
implicants. Minterm m3 can be covered with either prime implicant CD or prime implicant
B'C. Minterm mg can be covered with either AD or AB'. Minterm m, is covered with any one
of the four prime implicants. The simplified expression is obtained from the logical sum of the
two essential prime implicants and any two prime implicants that cover minterms ms, me, and
mj 1. There are four possible ways that the function can be expressed with four product terms
of two literals each:

F=BD+ B'D'"+CD+ AD
= BD + B'D' + CD + AB'
= BD + B'D' + B'C + AD
= BD + B'D' + B'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the alternatives that are available for obtaining a simplified expression.

The procedure for finding the simplified expression from the map requires that we first de-
termine all the essential prime implicants. The simplified expression is obtained from the log-
ical sum of all the essential prime implicants, plus other prime implicants that may be needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares, and each combination may produce an
equally simplified expression.

Section 3.4 Five-Variable Map 81

3.4 FIVE-VARIABLE MAP

Maps for more than four variables are not as simple to use as maps for four or fewer variables.
A five-variable map needs 32 squares and a six-variable map needs 64 squares. When the num-
ber of variables becomes large, the number of squares becomes excessive and the geometry for
combining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3.12. It consists of 2 four-variable maps with vari-
ables A, B, C, D, and E. Variable A distinguishes between the two maps, as indicated at the top
of the diagram. The left-hand four-variable map represents the 16 squares in which A = 0,
and the other four-variable map represents the squares in which A = 1. Minterms 0 through
15 belong with A = 0 and minterms 16 through 31 with A = 1. Each four-variable map re-
tains the previously defined adjacency when taken separately. In addition, each square in the
A = 0 map is adjacent to the corresponding square in the A = | map. For example, minterm
4 is adjacent to minterm 20 and minterm 15 to 31, The best way to visualize this new rule for
adjacent squares is to consider the two half maps as being one on top of the other. Any two
squares that fall one over the other are considered adjacent.

By following the procedure used for the five-variable map, it is possible to construct a six-
variable map with 4 four-variable maps to obtain the required 64 squares. Maps with six or more
variables need too many squares and are impractical to use. The alternative is to employ com-
puter programs specifically written to facilitate the simplification of Boolean functions with a
large number of variables,

By inspection, and taking into account the new definition of adjacent squares, it is possible
to show that any 2* adjacent squares, for k = (0, 1,2,..., n) in an n-variable map, will rep-
resent an area that gives a term of n — k literals. For this statement to have any meaning, how-
ever, n must be larger than k. When n = &, the entire area of the map is combined to give the

A=0 A=1
DE R DE i .
BC 0 01 11 10 BC 00 01 11 10
m, A "y m. i, [my, "
w| o 1 -] 2 00| 16| 17| 19] 18
my "y e ", My iy, (% "y
o 4 5 9 6 oif 20| 21| 23| 22
iz M3 My my, c Moy My, my L c
|l iz | 1| n| 2. |2 | n| 3w
B m, my my my, i "y My L My
10| 8 9 [11| 10 | 24| 25 27 | 26
E E
FIGURE 3.12

Five-variable map

82 Chapter 3 Gate-Level Minimization

Table 3.1
The Relationship between the Number of Adjacent Squares and the
Number of Literals in the Term
Number of
Adjacent Number of Literals
Squares in a Term in an n-variable Map
K 2* n=2 n=3 n=4 ==35
0 1 2 3 4 5
1 2 1 2 3 Rl
2 4 0 1 2 3
3 8 0 | 2
4 16 0 1
5 32 0

identity function. Table 3.1 shows the relationship between the number of adjacent squares
and the number of literals in the term. For example, eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

EXAMPLE 3.7

Simplify the Boolean function

F(A.B,C.D.E) = 3(0,2,4,6,9, 13,21, 23,25, 29, 31)

The five-variable map for this function is shown in Fig. 3.13. There are six minterms from
0 to 15 that belong to the part of the map with A = 0. The other five minterms belong with
A = 1. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'B'E'. Note that it is necessary to include A" with the term because all the squares are as-
sociated with A = 0. The two squares in column 01 and the last two rows are common to
both parts of the map. Therefore, they constitute four adjacent squares and give the three-
literal term BD'E. Variable A is not included here because the adjacent squares belong to
both A = 0 and A = 1. The term ACE is obtained from the four adjacent squares that are
entirely within the A = 1 map. The simplified function is the logical sum of the three
terms:

F = A'B'E' + BD'E + ACE

3.5

Section 3.5 Product-of-Sums Simplification 83

FIGURE 3.13
Map for Example 3.7, F = A'B'E' + BD'E + ACE

PRODUCT-OF-SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were ex-
pressed in sum-of-products form. With a minor modification, the product-of-sums form can be
obtained.

The procedure for obtaining a minimized function in product-of-sums form follows from
the basic properties of Boolean functions. The 1's placed in the squares of the map represent
the minterms of the function. The minterms not included in the standard sum-of-products form
of a function denote the complement of the function. From this observation, we see that the
complement of a function is represented in the map by the squares not marked by 1's. If we
mark the empty squares by 0°s and combine them into valid adjacent squares, we obtain a
simplified expression of the complement of the function (i.e., of F'). The complement of
F’ gives us back the function F. Because of the generalized DeMorgan's theorem, the func-
tion so obtained is automatically in product-of-sums form. The best way to show this is by
example.

84

EXAMPLE 3.8

Chapter 3 Gate-Level Minimization

C
D —_—
AB 00 01 11 10 5
m, -, m, ——
ol 1 | 1 —1 | , BcD'
BC'D —
01 1
s B
i
A "y mny my
10 1 1 1 AB
—————

Note: BC'D' + BCD' = BD'
FIGURE 3.14

Map for Example 3.8, F(A, B, C, D) = £(0,1,2,5,8,9,10)= B'D’ + B'C' + AC'D =
(A" + B)(C" + D')(B" + D)

Simplify the following Boolean function into (a) sum-of-products form and (b) product-of-
sums form:

F(A,B,C,D) = 2£(0,1,2,5,8,9,10)

The 1's marked in the map of Fig. 3.14 represent all the minterms of the function. The
squares marked with 0's represent the minterms not included in F and therefore denote the
complement of F. Combining the squares with 1's gives the simplified function in sum-of-
products form:
(a) F=B'D' + B'C'+ A'C'D
If the squares marked with 0's are combined, as shown in the diagram, we obtain the
simplified complemented function:

F'=AB + CD + BD'

Applying DeMorgan's theorem (by taking the dual and complementing each literal as de-
scribed in Section 2.4), we obtain the simplified function in product-of-sums form:

(b) F = (A’ + B')(C' + D')(B' + D)
1

The implementation of the simplified expressions obtained in Example 3.8 is shown in
Fig. 3.15. The sum-of-products expression is implemented in (a) with a group of AND gates,
one for each AND term. The outputs of the AND gates are connected to the inputs of a sin-
gle OR gate. The same function is implemented in (b) in its product-of-sums form with a
group of OR gates, one for each OR term. The outputs of the OR gates are connected to the
inputs of a single AND gate. In each case, it is assumed that the input variables are directly

Section 3.5 Product-of-Sums Simplification 85

B A
D B
c
—T —f=n
c — D —
A
D D
(a)F=8B'D'+B'C+A'CD (BYF=(A"+B)(C + D) (B +D)
FIGURE 3.15

Gate implementations of the function of Example 3.8

Table 3.2

Truth Table of Function F
x y z F
0 0 0 0
0 0 1 1
0] 0 0
0 | 1 I
I 0 (1] 1
1 0 1 1]
1 1 0 1
I | 1 0

|

available in their complement. so inverters are not needed. The configuration pattern estab-
lished in Fig. 3.15 is the general form by which any Boolean function is implemented when
expressed in one of the standard forms. AND gates are connected to a single OR gate when
in sum-of-products form; OR gates are connected to a single AND gate when in product-of-
sums form. Either configuration forms two levels of gates. Thus, the implementation of a
function in a standard form is said to be a two-level implementation.

Example 3.8 showed the procedure for obtaining the product-of-sums simplification when
the function is originally expressed in the sum-of-minterms canonical form. The procedure is
also valid when the function is originally expressed in the product-of-maxterms canonical
form. Consider, for example, the truth table that defines the function F in Table 3.2, In sum-
of-minterms form, this function is expressed as

F(x,y,.z) = Z(1,3.4,6)
In product-of-maxterms form, it is expressed as
F(x,y.2) =1{0,2.5,7)

In other words, the 1's of the function represent the minterms and the 0's represent the max-
terms. The map for this function is shown in Fig. 3.16. One can start simplifying the function
by first marking the I's for each minterm that the function is a 1. The remaining squares are

86

Chapter 3 Gate-Level Minimization

vz Py et
* 00 01 11 10

my o |-y

0

0 ______._.-l-—-"x’z
x{l

FIGURE 3.16
Map for the function of Table 3.2

marked by 0's. If, instead, the product of maxterms is initially given, one can start marking 0's
in those squares listed in the function; the remaining squares are then marked by 1's. Once the
1's and 0’s are marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the 1’s to obtain

F=xz¥az

For the product of sums, we combine the 0's to obtain the simplified complemented function
F'=xz+x'7

which shows that the exclusive-OR function is the complement of the equivalence function

(Section 2.6). Taking the complement of F’, we obtain the simplified function in product-of-
sums form:

F=(x'+2)x+2)

To enter a function expressed in product-of-sums form into the map, use the complement of the
function to find the squares that are to be marked by 0's. For example, the function

F=(A"+B +C')B+ D)
can be entered into the map by first taking its complement, namely,
F' = ABC + B'D'

and then marking 0's in the squares representing the minterms of F'. The remaining squares
are marked with 1's.

3.6 DON'T-CARE CONDITIONS

The logical sum of the minterms associated with a Boolean function specifies the conditions
under which the function is equal to 1. The function is equal to O for the rest of the minterms.
This pair of conditions assumes that all the combinations of the values for the variables of the
function are valid. In practice, in some applications the function is not specified for certain
combinations of the variables. As an example, the four-bit binary code for the decimal digits
has six combinations that are not used and consequently are considered to be unspecified.

Section 3.6 Don’t-Care Conditions 87

Functions that have unspecified outputs for some input combinations are called incompletely
specified funcrions. In most applications, we simply don’t care what value is assumed by the
function for the unspecified minterms. For this reason, it is customary to call the unspecified
minterms of a function don t-care conditions. These don't-care conditions can be used on a
map to provide further simplification of the Boolean expression.

A don’t-care minterm is a combination of variables whose logical value is not specified. Such
a minterm cannot be marked with a | in the map, because it would require that the function al-
ways be a | for such a combination. Likewise, putting a 0 on the square requires the function
to be 0. To distinguish the don’t-care condition from 1°s and 0's, an X is used. Thus, an X in-
side a square in the map indicates that we don’t care whether the value of 0 or | is assigned to
F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care minterms
may be assumed to be either 0 or 1. When simplifying the function, we can choose to include
each don't-care minterm with either the 1's or the (s, depending on which combination gives
the simplest expression.

EXAMPLE 3.9

Simplify the Boolean function
F(w,x,y,2) = £(1,3,7, 11, 15)
which has the don't-care conditions
d{w,x.y,z) = £(0.2,5)

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of are the don’t-care minterms that may be assigned either 0 or 1. The map sim-
plification is shown in Fig. 3.17. The minterms of F are marked by 1's, those of d are marked

yz —

00 01 11
w B
X B

wx

oL o

Phyy iy R T

11] 0 : 5 0

iy "y 5 ;.. my,
wf o 0 B 0
N
z -
(a}) F=yz + wix' (b) F=yz+wz
FIGURE 3.17

Example with don’t-care conditions

88

Chapter 3 Gate-Level Minimization

by X's, and the remaining squares are filled with 0's. To get the simplified expression in sum-
of-products form, we must include all five 1’s in the map, but we may or may not include any
of the X's, depending on the way the function is simplified. The term yz covers the four minterms
in the third column. The remaining minterm, m;, can be combined with minterm mj; to give
the three-literal term w'x’z. However, by including one or two adjacent X's we can combine
four adjacent squares to give a two-literal term. In part (a) of the diagram, don’t-care minterms
0 and 2 are included with the 1's, resulting in the simplified function

F=yz +wkx'
[n part (b), don’t-care minterm 5 is included with the 1's, and the simplified function is now
F —— J.z + w‘z

Either one of the preceding two expressions satisfies the conditions stated for this example.
4

The previous example has shown that the don't-care minterms in the map are initially marked
with X's and are considered as being either 0 or |. The choice between 0 and | is made de-
pending on the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obtained will consist of a sum of minterms that includes those minterms
which were initially unspecified and have been chosen to be included with the 1's. Consider
the two simplified expressions obtained in Example 3.9:

F(w,x,y,2) =yz +w'x' = £(0,1,2,3,7,11. 15)
Fw,x,»,2) = yz + w'z = £(1,3,5,7, 11, 15)

Both expressions include minterms 1, 3, 7, 11, and 15 that make the function F equal to 1. The
don’t-care minterms 0, 2, and 5 are treated differently in each expression. The first expression
includes minterms 0 and 2 with the 1’s and leaves minterm 5 with the 0’s. The second expres-
sion includes minterm 5 with the 1's and leaves minterms 0 and 2 with the 0's. The two ex-
pressions represent two functions that are not algebraically equal. Both cover the specified
minterms of the function, but each covers different don’t-care minterms. As far as the incom-
pletely specified function is concerned, either expression is acceptable because the only dif-
ference is in the value of F for the don’t-care minterms.

It is also possible to obtain a simplified product-of-sums expression for the function of
Fig. 3.17. In this case, the only way to combine the 0's is to include don’t-care minterms 0
and 2 with the 0's to give a simplified complemented function:

F'=z' +wy'
Taking the complement of F' gives the simplified expression in product-of-sums form:
Fiw,x,5,2) = z(w' +y) = £(1,3,5,7,11, 15)
In this case, we include minterms 0 and 2 with the 0's and minterm 5 with the 17s.

Section 3.7 NAND and NOR Implementation 89

3.7 NAND AND NOR IMPLEMENTATION

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and
OR gates. NAND and NOR gates are easier to fabricate with electronic components and are
the basic gates used in all IC digital logic families. Because of the prominence of NAND and
NOR gates in the design of digital circuits, rules and procedures have been developed for the
conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent
NAND and NOR logic diagrams.

NAND Circuits

The NAND gate is said to be a universal gate because any digital system can be implemented
with it. To show that any Boolean function can be implemented with NAND gates. we need
only show that the logical operations of AND, OR, and complement can be obtained with NAND
gates alone, This is indeed shown in Fig. 3.18. The complement operation is obtained from a one-
input NAND gate that behaves exactly like an inverter. The AND operation requires two NAND
gates. The first produces the NAND operation and the second inverts the logical sense of the sig-
nal. The OR operation is achieved through a NAND gate with additional inverters in each input.

A convenient way to implement a Boolean function with NAND gates is to obtain the sim-
plified Boolean function in terms of Boolean operators and then convert the function to NAND
logic. The conversion of an algebraic expression from AND, OR. and complement to NAND
can be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND diagrams.

To facilitate the conversion to NAND logic, it is convenient to define an alternative graphic
symbol for the gate. Two equivalent graphic symbols for the NAND gate are shown in Fig. 3.19.

Inverter x —Do—— X
X
AND | :D:—Do— Xy

OR y)Y=x+y

FIGURE 3.18
Logic operations with NAND gates

X X
(a) AND-invent (b) Invert-OR
FIGURE 3.19

Two graphic symbols for the NAND gate

90 Chapter 3 Gate-Level Minimization

The AND-invert symbol has been defined previously and consists of an AND graphic symbol fol-
lowed by a small circle negation indicator referred to as a bubble. Alternatively, it is possible to
represent a NAND gate by an OR graphic symbol that is preceded by a bubble in each input. The
invert-OR symbol for the NAND gate follows DeMorgan's theorem and the convention that the
negation indicator denotes complementation. The two graphic symbols’ representations are use-
ful in the analysis and design of NAND circuits. When both symbols are mixed in the same
diagram, the circuit is said to be in mixed notation.

Two-Level Implementation

The implementation of Boolean functions with NAND gates requires that the functions be in
sum-of-products form. To see the relationship between a sum-of-product expression and its
equivalent NAND implementation, consider the logic diagrams drawn in Fig. 3.20. All three
diagrams are equivalent and implement the function

F=AB+ CD

The function is implemented in (a) with AND and OR gates. In (b), the AND gates are re-
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graphic
symbol. Remember that a bubble denotes complementation and two bubbles along the same
line represent double complementation, so both can be removed. Removing the bubbles on the
gates of (b) produces the circuit of (a). Therefore, the two diagrams implement the same func-
tion and are equivalent.

In Fig. 3.20(c), the output NAND gate is redrawn with the AND-invert graphic symbol.
In drawing NAND logic diagrams, the circuit shown in either (b) or (c) is acceptable. The

- T

U O

(a)

W

o 0

(®) (c)

FIGURE 3.20
Three ways to implement F = AB + CD

Section 3.7 NAND and NOR Implementation 21

one in (b) is in mixed notation and represents a more direct relationship to the Boolean
expression it implements. The NAND implementation in Fig. 3.20(c) can be verified alge-
braically. The function it implements can easily be converted to sum-of-products form by
DeMorgan’s theorem:

F = ((AB)'(CD)')' = AB + CD

EXAMPLE 3.10

Implement the following Boolean function with NAND gates:
F(x,v,z) =(1,2.3,4,57)

The first step is to simplify the function into sum-of-products form. This is done by means of
the map of Fig. 3.21(a), from which the simplified function is obtained:

F=xy' 4+ xly+z

The two-level NAND implementation is shown in Fig. 3.21(b) in mixed notation. Note that input
z must have a one-input NAND gate (an inverter) to compensate for the bubble in the second-
level gate. An alternative way of drawing the logic diagram is given in Fig. 3.21(c). Here, all
the NAND gates are drawn with the same graphic symbol. The inverter with input z has been
removed, but the input variable is complemented and denoted by z'.

]

F=xy'+x'y+z

=

e x e

e

FIGURE 3.21
Solution to Example 3.10

92

Chapter 3 Gate-Level Minimization

The procedure described in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic diagram
from a Boolean function is as follows:

1. Simplify the function and express it in sum-of-products form.

2. Draw a NAND gate for each product term of the expression that has at least two literals.
The inputs to each NAND gate are the literals of the term. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first-level gates.

4. Aterm with a single literal requires an inverter in the first level. However, if the single literal
is complemented, it can be connected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions, however, when the design of digital systems results in gating structures
with three or more levels. The most common procedure in the design of multilevel circuits is
to express the Boolean function in terms of AND, OR, and complement operations. The func-
tion can then be implemented with AND and OR gates. After that, if necessary, it can be con-
verted into an all-NAND circuit. Consider, for example, the Boolean function

F = A(CD + B) + BC'

Although it is possible to remove the parentheses and reduce the expression into a standard sum-
of-products form, we choose to implement it as a multilevel circuit for illustration. The
AND-OR implementation is shown in Fig. 3.22(a). There are four levels of gating in the cir-
cuit. The first level has two AND gates. The second level has an OR gate followed by an AND
gate in the third level and an OR gate in the fourth level. A logic diagram with a pattern of al-
ternating levels of AND and OR gates can easily be converted into a NAND circuit with the
use of mixed notation, shown in Fig. 3.22(b). The procedure is to change every AND gate to
an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND
circuit performs the same logic as the AND-OR diagram as long as there are two bubbles along
the same line. The bubble associated with input B causes an extra complementation, which
must be compensated for by changing the input literal to B'.

The general procedure for converting a multilevel AND—OR diagram into an all-NAND di-
agram using mixed notation is as follows;

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.
2, Convert all OR gates to NAND gates with invert-OR graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is not compensated by an-
other small circle along the same line, insert an inverter (a one-input NAND gate) or
complement the input literal.

As another example, consider the multilevel Boolean function
F = (AB' + A'B)(C + D')

Section 3.7 NAND and NOR Implementation 93

m 2= N

(a) AND-OR gates

(b) NAND gates

FIGURE 3.22
Implementing F = A(CD ~ B) + BC’

The AND-OR implementation of this function is shown in Fig. 3.23(a) with three levels of gat-
ing. The conversion to NAND with mixed notation is presented in part (b) of the diagram. The
two additional bubbles associated with inputs C and D' cause these two literals to be comple-
mented to C' and D. The bubble in the output NAND gate complements the output value, so
we need to insert an inverter gate at the output in order 1o complement the signal again and get
the original value back.

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for
NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gate that can be used to implement any Boolean function.
The implementation of the complement, OR, and AND operations with NOR gates is shown
in Fig. 3.24. The complement operation is obtained from a one-input NOR gate that behaves
exactly like an inverter. The OR operation requires two NOR gates, and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.25. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND
symbol complements each input and then performs an AND operation. The two symbols
designate the same NOR operation and are logically identical because of DeMorgan's
theorem.

94 Chapter 3 Gate-Level Minimization

(a) AND-OR gates

(b) NAND gates

FIGURE 3.23
Implementing F = (AB’ + A’B)(C + D')

Inverter

=
: |'.l‘.'§
h--

FIGURE 3.24
Logic operations with NOR gates

y—7F

(x+y+2z) xy''=(x+y+2)

{a) OR-invert (b) Invert-AND

FIGURE 3.25
Two graphic symbols for the NOR gate

Section 3.7 NAND and NOR Implementation 95

A two-level implementation with NOR gates requires that the function be simplified into
product-of-sums form. Remember that the simplified product-of-sums expression is obtained
from the map by combining the 0's and complementing, A product-of-sums expression is im-
plemented with a first level of OR gates that produce the sum terms followed by a second-
level AND gate to produce the product. The transformation from the OR-AND diagram to a
NOR diagram is achieved by changing the OR gates to NOR gates with OR-invert graphic
symbols and the AND gate 1o a NOR gate with an invert-AND graphic symbol. A single literal
term going into the second-level gate must be complemented. Fig. 3.26 shows the NOR im-
plementation of a function expressed as a product of sums:

F=(A+ B)(C + D)E

The OR-AND pattern can easily be detected by the removal of the bubbles along the same line.
Variable E is complemented to compensate for the third bubble at the input of the second-level
gate.

The procedure for converting a multilevel AND-OR diagram to an all-NOR diagram is
similar to the one presented for NAND gates. For the NOR case. we must convert each OR gate
to an OR-invert symbol and each AND gate to an invert-AND symbol. Any bubble that is not
compensated by another bubble along the same line needs an inverter, or the complementation
of the input literal.

The transformation of the AND-OR diagram of Fig. 3.23(a) into a NOR diagram is shown
in Fig. 3.27. The Boolean function for this circuit is

F=(AB + A'B)(C + D)

FIGURE 3.26
Implementing F = (A + B)(C + DJE

FIGURE 3.27
Implementing F = (AB" + A’B)(C + D’) with NOR gates

Chapter 3 Gate-Level Minimization

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing all
the bubbles. To compensate for the bubbles in four inputs, it is necessary to complement the
corresponding input literals.

3.8 OTHER TWO-LEVEL IMPLEMENTATIONS

The types of gates most often found in integrated circuits are NAND and NOR gates. For this
reason, NAND and NOR logic implementations are the most important from a practical point
of view. Some (but not all) NAND or NOR gates allow the possibility of a wire connection be-
tween the outputs of two gates to provide a specific logic function. This type of logic is called
wired logic. For example, open-collector TTL NAND gates, when tied together, perform wired-
AND logic. (The open-collector TTL gate is shown in Chapter 10, Fig. 10.11.) The wired-
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the lines going through the center of the gate to distinguish it from a conventional
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the circuit
of Fig. 3.28(a) is

F = (AB)'-+-(CD)' = (AB + CD)' = (A’ + B')(C’ + D')
and is called an AND-OR-INVERT function.

Similarly, the NOR outputs of ECL gates (see Figure 10.17) can be tied together to perform
a wired-OR function. The logic function implemented by the circuit of Fig. 3.28(b) is

F=(A+B) +(C+ D) =[(A+ B)(C+ D)

and is called an OR-AND-INVERT function.

A wired-logic gate does not produce a physical second-level gate, since it is just a wire con-
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.28 as
two-level implementations. The first level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit-
ted in subsequent discussions.

F=(AB + CD)' F=[(A+B)(C+ D))

(a) Wired-AND in open-collector
TTL NAND gates.

(AND-OR-INVERT)

FIGURE 3.28
Wired logic

(b) Wired-OR in ECL gates

(OR-AND-INVERT)

(a) Wired-AND logic with two NAND gates
(b) Wired-OR in emitter-coupled logic (ECL) gates

Section 3.8 Other Two-Level Implementations 97

Nondegenerate Forms

It will be instructive from a theoretical point of view to find out how many two-level combi-
nations of gates are possible. We consider four 1ypes of gates: AND, OR, MAND, and NOR.
If we assign one type of gate for the first level and one type for the second level, we find that
there are 16 possible combinations of two-level forms. (The same type of gate can be in the first
and second levels, as in a NAND-NAND implementation.) Eight of these combinations are said
1o be degenerate forms because they degenerate to a single operation, This can be seen from
a circuit with AND gates in the first level and an AND gate in the second level. The output of
the circuit is merely the AND function of all input variables. The remaining eight nondegenerate
forms produce an implementation in sum-of-products form or product-of-sums form, The eight
nondegenerate forms are as follows:

AND-OR OR-AND
NAND-NAND NOR-NOR
NOR-OR NAND-AND
OR-NAND AND-NOR

The first gate listed in each of the forms constitutes a first level in the implementation. The sec-
ond gate listed is a single gate placed in the second level. Note that any two forms listed on the
same line are duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3.4.
The NAND-NAND and NOR-NOR forms were presented in Section 3.6. The remaining four
forms are investigated in this section.

AND-OR-INVERT Implementation

The two forms NAND-AND and AND-NOR are equivalent and can be treated together. Both
perform the AND-OR-INVERT function, as shown in Fig. 3.29. The AND-NOR form re-
sembles the AND-OR form, but with an inversion done by the bubble in the output of the
NOR gate. It implements the function

F=(AB+CD+ E)

(a) AND-NOR (b) AND-NOR (c) NAND-AND

FIGURE 3.29
AND-OR-INVERT circuits, F = (AB + CD + E)*

98

Chapter 3 Gate-Level Minimization

By using the alternative graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3.29(b). Note that the single variable £ is nor complemented, because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter-
minal of the second-level gate to the output terminals of the first-level gates. An inverter is need-
ed for the single variable in order to compensate for the bubble. Alternatively, the inverter can
be removed, provided that input E is complemented. The circuit of Fig. 3.29(c) is a
NAND-AND form and was shown in Fig. 3.28 to implement the AND-OR-INVERT function.

An AND-OR implementation requires an expression in sum-of-products form. The
AND-OR-INVERT implementation is similar, except for the inversion. Therefore, if the comp-
lement of the function is simplified into sum-of-products form (by combining the 0's in the map),
it will be possible to implement F' with the AND-OR part of the function. When F’ passes
through the always present output inversion (the INVERT part), it will generate the output F
of the function. An example for the AND-OR-INVERT implementation will be shown
subsequently.

OR-AND-INVERT implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubble in the NAND gate. It implements the function

F = [(A + B)(C + D)EY

By using the alternative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c¢) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig. 3.30(c) is a NOR-OR
form and was shown in Fig, 3.28 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product-of-sums form.
If the complement of the function is simplified into that form, we can implement F' with the
OR-AND part of the function. When F* passes through the INVERT part, we obtain the com-
plement of F’, or F, in the output,

(a) OR-NAND (b) OR-NAND (c) NOR-OR

FIGURE 3.30
OR-AND-INVERT circuits, F = [(A + B)(C + D)EY

Section 3.8 Other Two-Level Implementations 99

Table 3.3
Implementation with Other Two-Level Forms
Equivalent
Nondegenerate
eJ Implements simplify To Get
the F an Output
(b)* Function into of

NAND-AND AND-OR-INVERT Sum-of-products

form by combining

0's in the map, F
NOR-OR OR-AND-INVERT Product-of-sums

form by combining
1"s in the map and
then complementing. F

*Form (b) requires an inverter for a single literal term.

Tabular Summary and Example

EXAMPLE 3.11

Table 3.3 summarizes the procedures for implementing a Boolean function in any one of the
four 2-level forms. Because of the INVERT part in each case, it is convenient 1o use the sim-
plification of /' (the complement) of the function. When F' is implemented in one of these
forms, we obtain the complement of the function in the AND-OR or OR-AND form. The four
2-level forms invert this function. giving an output that is the complement of F’. This is the
normal output F.

Implement the function of Fig, 3.31(a) with the four 2-level forms listed in Table 3.3.
The complement of the function is simplified into sum-of-products form by combining the 0's
in the map:

Fl'=u'y + xy' ¢
The normal output for this function can be expressed as
F=(xv+ay +2z)

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations
are shown in Fig. 3.31(b). Note that a one-input NAND, or inverter, gate is needed in the
NAND-AND implementation, but not in the AND-NOR case. The inverter can be removed
if we apply the input variable ' instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of the
function in product-of-sums form. To obtain this expression, we first combine the 1's in the map:

F=x'y'z" + xy2'

100 Chapter 3 Gate-Level Minimization

yz g, E——
X 0 01 1 10
. ”'ol 'l:u lllso M:O F=IJ}"Z’+I}?Z'
x'y'z'-—-—""-f F=x'y+xy' +2
il m, 5 my 2 My . mg ; - x},zu

AND-NOR

OR-NAND

NOR-OR

() F=[(x+y+z)(x+y +2)]

FIGURE 3.31
Other two-level implementations

Then we take the complement of the function:

F'=(x+y+z)(x+y +2)
The normal output F can now be expressed in the form
F=[x+y+2)(x +y +2)

which is the OR-AND-INVERT form. From this expression, we can implement the function
in the OR-NAND and NOR-OR forms, as shown in Fig. 3.31(c).

Section 3.9 Exclusive-OR Function 101

3.9 EXCLUSIVE-OR FUNCTION

The exclusive-OR (XOR), denoted by the symbol &, is a logical operation that performs the
following Boolean operation:

x8y=xy + x'y

The exclusive-OR is equal to | if only x is equal to 1 or if only y is equal to | (i.e., x and y dif-
fer in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-
NOR, also known as equivalence, performs the following Boolean operation:

(x@y) = xy + xy'

The exclusive-NOR is equal to 1 if both x and v are equal to 1 or if both are equal to 0. The ex-
clusive-NOR can be shown to be the complement of the exclusive-OR by means of a truth
table or by algebraic manipulation:

(@) = (' +x'y) = (¢ + ¥)(x +¥) = xp + 2y

The following identities apply to the exclusive-OR operation:

x@0=x
3l =x
x@x=0
8x' =1

8y =x"@y= (x8y)

Any of these identities can be proven with a truth 1able or by replacing the © operation by its
equivalent Boolean expression. Also, it can be shown that the exclusive-OR operation is both
commutative and associative; that is,

ABB=B®A
and
(A@B)SC=A8(BBC)= A®BBC

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in any
order, and for this reason, three or more variables can be expressed without parentheses. This
would imply the possibility of using exclusive-OR gates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even a two-
input function is usually constructed with other types of gates. A two-input exclusive-OR func-
tion is constructed with conventional gates using two inverters, two AND gates, and an OR gate,
as shown in Fig. 3.32(a). Figure 3.32(b) shows the implementation of the exclusive-OR with
four NAND gates. The first NAND gate performs the operation (xv)" = (x' + ¥'). The other
two-level NAND circuit produces the sum of products of its inputs:

(+ ¥+ (" +¥ry=xv" +x'y=xBy

102 Chapter 3 Gate-Level Minimization

’ 1

e
P>

x SRR
= —1
y
(b) With NAND gates
FIGURE 3.32
Exclusive-OR implementations

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR
operations. Nevertheless, this function emerges quite often during the design of digital sys-
tems. It is particularly useful in arithmetic operations and error detection and correction circuits.

0Odd Function

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the & symbol with its equivalent Boolean expression. In par-
ticular, the three-variable case can be converted to a Boolean expression as follows:

A®B®C = (AB' + A'B)C' + (AB + A'B')C
= AB'C’ + A'BC’ + ABC + A'B'C
= 2(1,2,4,7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary to the two-
variable case, in which only one variable must be equal to 1, in the case of three or more vari-
ables the requirement is that an odd number of variables be equal to 1. As a consequence, the
multiple-variable exclusive-OR operation is defined as an odd function.

The Boolean function derived from the three-variable exclusive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001, 010, 100, and
111. Each of these binary numbers has an odd number of 1's. The remaining four minterms

Section 3.9 Exclusive-OR Function 103

not included in the function are 000. 011, 101. and 110. and they have an even number of 1's
in their binary numerical values. In general, an n-variable exclusive-OR function is an odd
function defined as the logical sum of the 2"/2 minterms whose binary numerical values
have an odd number of 1's.

The definition of an odd function can be clarified by plotting it in a map. Figure 3.33(a) shows
the map for the three-variable exclusive-OR function. The four minterms of the function are a
unit distance apart from each other. The odd function is identified from the four minterms
whose binary values have an odd number of 1's. The complement of an odd function is an
even function. As shown in Fig. 3.33(b), the three-variable even function is equal to | when
an even number of its variables is equal to 1 (including the condition that none of the variables
isequal to 1).

The three-input odd function is implemented by means of two-input exclusive-OR gates, as
shown in Fig. 3.34(a). The complement of an odd function is obtained by replacing the output
gate with an exclusive-NOR gate, as shown in Fig. 3.34(b).

Consider now the four-variable exclusive-OR operation. By algebraic manipulation, we can
obtain the sum of minterms for this function:

ABGBBCHD = (AB' + A'B)@ (CD' + C'D)
= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD’ + C'D)
= 3(1,2,4,7,8.11.13, 14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms have binary
numerical values with an odd number of 1's: the other half of the minterms have binary numerical

BC L BC B
AN o o 11 10 A W 01 1110
@ ., ™y LR oy ry m. ™
0 | 1 o| 1 1
=)] " ™, ™ ™, " ™,
Af1] 1 1 Af1 1 1
c c
{a) Odd function F = A& BS ¢ (b) Even function F= (A & B& C)’
FIGURE 3.33

Map for a three-variable exclusive-OR function

A A
B l. I' B
c c

(a) 3-input odd function (b) 3-input even function

FIGURE 3.34
Logic diagram of odd and even functions

104

Chapter 3 Gate-Level Minimization

c C
CcD CcD —_—
ABN 00 01 11 10 AB 00 01 1110
my m, my my my i my my
00 1 1 00 1 1
m, g m, mg i, g m- m,
01 1 1 01 1 1
B m m m B
iy My My My 1 i 1 LU
11 1 1 11 1 1
4 mg "y gy my, “ s ny nyy my
0] 1 1 10 1 1
—————— e ——
D D
(a) Odd function F= AG B@E2CSE& D (b) Even function F= (A@B&HCH D)’
FIGURE 3.35

Map for a four-variable exclusive-OR function

values with an even number of 1's, In plotting the function in the map, the binary numerical value
for a minterm is determined from the row and column numbers of the square that represents the
minterm. The map of Fig. 3.35(a) is a plot of the four-variable exclusive-OR function. This is
an odd function because the binary values of all the minterms have an odd number of 1’s. The
complement of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to 1 when an even number of its variables is equal to 1.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error detection and correction
codes. As discussed in Section 1.7, a parity bit is used for the purpose of detecting errors dur-
ing the transmission of binary information, A parity bit is an extra bit included with a binary
message to make the number of 1's either odd or even. The message, including the parity bit,
is transmitted and then checked at the receiving end for errors. An error is detected if the
checked parity does not correspond with the one transmitted. The circuit that generates the par-
ity bit in the transmitter is called a parity generator. The circuit that checks the parity in the
receiver is called a parity checker.

As an example, consider a three-bit message to be transmitted together with an even parity
bit. Table 3.4 shows the truth table for the parity generator. The three bits—x, v, and z—
constitute the message and are the inputs to the circuit. The parity bit P is the output. For even
parity, the bit P must be generated to make the total number of 1's (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to 1 for those
minterms whose numerical values have an odd number of 1's. Therefore, P can be expressed
as a three-variable exclusive-OR function:

P=x@®yDz

The logic diagram for the parity generator is shown in Fig. 3.36(a).

Section 3.9 Exclusive-OR Function 105

Table 3.4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
x ¥ z P
0 0 0
0 0 1 1
0 I 0 1
0 | I 0
| 0 0 1
1 0 1 0
1 1 0 0
1 | 1 |
X
J ¥
v i c
z P
(a) 3-bit even parity penerator (b) 4-bit even parity checker

FIGURE 3.36
Logic diagram of a parity generator and checker

The three bits in the message. together with the parity bit, are transmitted to their destina-
tion, where they are applied 1o a parity-checker circuit to check for possible errors in the trans-
mission. Since the information was transmitted with even parity. the four bits received must have
an even number of 1's. An error occurs during the transmission if the four bits received have
an odd number of 1's, indicating that one bit has changed in value during transmission. The out-
put of the parity checker, denoted by C, will be equal to 1 if an error occurs—that is, if the four
bits received have an odd number of 1's. Table 3.5 is the truth table for the even-parity checker.
From it, we see that the function C consists of the eight minterms with binary numerical val-
ues having an odd number of 1's. The table corresponds to the map of Fig. 3.35(a), which
represents an odd function. The parity checker can be implemented with exclusive-OR gates:

C=xByB:9P

The logic diagram of the parity checker is shown in Fig. 3.36(b).

It is worth noting that the parity generator can be implemented with the circuit of Fig. 3.36(b)
if the input P is connected to logic 0 and the output is marked with P, This is because z 0 = z,
causing the value of z 1o pass through the gate unchanged. The advantage of this strategy is that
the same circuit can be used for both parity generation and checking.

106 Chapter 3 Gate-Level Minimization

Table 3.5
Even-Parity-Checker Truth Table
Four Bits Parity Error
Received Check
x y z P C
0 0 0 0 0
0 0 0 1 1
0 0 1 0 |
0 0 1 1 0
0 1 0 0 !
0 1 0 l 0
0 | 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
| 0 1 0 0
! 0 1 1 1
! | 0 0 0
1 1 0 1 1
l ! 1 0 1
1 1 1 | 0

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1's. As a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im-
plemented with exclusive-OR gates, except that the gate associated with the output must be an
exclusive-NOR to provide the required complementation.

3.10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circuit is small. For any-
thing else (i.e., a practical circuit), designers use computer-based design tools. Coupled with
a correct-by-construction methodology, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design. Prototype integrated
circuits are too expensive and time consuming to build, so all modern design tools rely on a
hardware description language to describe, design, and test a circuit in software before it is
ever manufactured.

A hardware description language (HDL) is a computer-based language that describes the
hardware of digital systems in a textual form. It resembles an ordinary computer programming
language, such as C, but is specifically oriented to describing hardware structures and the
behavior of logic circuits. It can be used to represent logic diagrams, truth tables, Boolean

Section 3.10 Hardware Description Language 107

expressions, and complex abstractions of the behavior of a digital system. One way to view an
HDL is to observe that it describes a relationship between signals that are the inputs to a cir-
cuit and the signals that are outputs of the circuit, For example, an HDL description of an AND
gate describes how the logic value of the gate’s output is determined by the logic values of its
inputs.

As a documentation language. an HDL is used to represent and document digital systems
in a form that can be read by both humans and computers and is suitable as an exchange lan-
guage between designers, The language content can be stored, retrieved, edited, and transmit-
ted easily and processed by computer software in an efficient manner.

HDLs are used in several major steps in the design flow of an integrated circuit: design
entry, functional simulation or verification, logic synthesis. timing verification. and fault
simulation.

Design enrry creates an HDL-based description of the functionality that is to be imple-
mented in hardware. Depending on the HDL, the description can be in a variety of forms:
Boolean logic equations, truth tables, a netlist of interconnected gates, or an abstract behavioral
model. The HDL model may also represent a partition of a larger circuit into smaller inter-
connected and interacting functional units.

Logic sinudarion displays the behavior of a digital system through the use of a computer. A
simulator interprets the HDL description and either produces readable output, such as a time-
ordered sequence of input and output signal values, or displays waveforms of the signals. The
simulation of a circuit predicts how the hardware will behave before it is actually fabricated.
Simulation allows the detection of functional errors in a design without having to physically
create and operate the circuit. Errors that are detected during a simulation can be corrected by
modifying the appropriate HDL statements. The stimulus (i.e., the logic values of the inputs to
a circuit) that tests the functionality of the design is called a test bench. Thus, to simulate a dig-
ital system, the design is first described in an HDL and then verified by simulating the design
and checking it with a test bench, which is also written in the HDL. An alternative and more
complex approach relies on formal mathematical methods to prove that a circuit is function-
ally correct. We will focus exclusively on simulation.

Logic synthesis is the process of deriving a list of physical components and their intercon-
nections (called a nerlisr) from the model of a digital system described in an HDL. The netlist
can be used to fabricate an integrated circuit or to lay out a printed circuit board with the hard-
ware counterparts of the gates in the list. Logic synthesis is similar to compiling a program in
a conventional high-level language. The difference is that, instead of producing an object code,
logic synthesis produces a database describing the elements and structure of a circuit. The data-
base specifies how to fabricate a physical integrated circuit that implements in silicon the func-
tionality described by statements made in an HDL. Logic synthesis is based on formal exact
procedures that implement digital circuits and addresses that part of a digital design which can
be automated with computer software. The design of today’s large, complex circuits is made
possible by logic synthesis software.

Timing verification confirms that the fabricated integrated circuit will operate at a speci-
fied speed. Because each logic gate in a circuit has a propagation delay, a signal transition at
the input of a circuit cannot immediately cause a change in the logic value of the output of a
circuit. Propagation delays ultimately limit the speed at which a circuit can operate. Timing

108 Chapter 3 Gate-Level Minimization

verification checks each signal path to verify that it is not compromised by propagation delay.
This step is done after logic synthesis specifies the actual devices that will compose a circuit
and before the circuit is released for production.

In VLSI circuit design, fault simularion compares the behavior of an ideal circuit with the
behavior of a circuit that contains a process-induced flaw. Dust and other particulates in the
atmosphere of the clean room can cause a circuit to be fabricated with a fault. A circuit with
a fault will not exhibit the same functionality as a fault-free circuit. Fault simulation is used
to identify input stimuli that can be used to reveal the difference between the faulty circuit and
the fault-free circuit. These test patterns will be used to test fabricated devices to ensure that
only good devices are shipped to the customer. Test generation and fault simulation may occur
at different steps in the design process, but they are always done before production in order
to avoid the disaster of producing a circuit whose internal logic cannot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the public
domain, there are two standard HDLs that are supported by the IEEE: VHDL and Verilog.
VHDL is a Department of Defense-mandated language. (The Vin VHDL stands for the first
letter in VHSIC, an acronym for very high speed integrated circuit.) Verilog began as a
proprietary HDL of Cadence Design Systems, but Cadence transferred control of Verilog to
a consortium of companies and universities known as Open Verilog International (OVI) as a
step leading to its adoption as an IEEE standard. VHDL is more difficult to learn than Verilog.
Because Verilog is an easier language than VHDL to describe, learn, and use, we have cho-
sen it for this book. However, the Verilog HDL descriptions listed throughout the book are not
just about Verilog, but also serve to introduce a design methodology based on the concept of
computer-aided modeling of digital systems by means of a typical hardware description
language. Our emphasis will be on the modeling, verification, and synthesis (both manual
and automated) of Verilog models of circuits having specified behavior. The Verilog HDL
was initially approved as a standard HDL in 1995; revised and enhanced versions of the lan-
guage were approved in 2001 and 2005. We will address only those features of Verilog,
including the latest standard, that support our discussion of HDL-based design methodology
for integrated circuits.

Module Declaration

The language reference manual for the Verilog HDL presents a syntax that describes precisely
the constructs that can be used in the language. In particular, a Verilog model is composed
of text using keywords, of which there are about 100. Keywords are predefined lowercase
identifiers that define the language constructs, Examples of keywords are module, end-
module, input, output, wire, and, or, and not, For clarity, keywords will be displayed in
boldface in the text in all examples of code and wherever it is appropriate to call attention
to their use. Any text between two forward slashes (/) and the end of the line is interpreted
as a comment and will have no effect on a simulation using the model. Multiline comments
begin with /* and terminate with */. Blank spaces are ignored, but they may not appear with-
in the text of a keyword, a user-specified identifier, an operator, or the representation of a num-
ber. Verilog is case sensitive. which means that uppercase and lowercase letters are
distinguishable (e.g., not is not the same as NOT). The term module refers to the text enclosed

Section 3.10 Hardware Description Language 109

A wl
Gl
B - ‘ b D

FIGURE 3.37
Circuit to demonstrate an HDL

by the keyword pair module ... endmodule. A module is the fundamental descriptive unit
in the Verilog language. It is declared by the keyword module and must always be terminated
by the keyword endmodule.

Combinational logic can be described by a schematic connection of gates, by a set of Boolean
equations, or by a truth table. Each type of description can be developed in Verilog. We will
demonstrate each style, beginning with a simple example of a Verilog gate-level description to
illustrate some aspects of the language.

The HDL description of the circuit of Fig. 3.37 is shown in HDL Example 3.1. The first line of
text is a comment (optional) providing useful information to the reader. The second line begins with
the keyword module and starts the declaration (description) of the module; the last line completes
the declaration with the keyword endmodule. The keyword module is followed by a name and a
list of ports. The name (Simple_Circuit in this example) is an identifier. Identifiers are names given
to modules, variables (e.g., a signal), and other elements of the language so that they can be ref-
erenced in the design. In general, we choose meaningful names for modules. Identifiers are com-
posed of alphanumeric characters and the underscore (_), and are case sensitive. Identifiers must
start with an alphabetic character or an underscore, but they cannot start with a number.

HDL Example 3.1 (Combinational logic modeled with primitives)

1/ Verilog model of circuit of Figure 3.37. IEEE 1364-1995 Syntax

module Simple_Circuit (A, B, C, D, E);

output D, E:

input A B, C

wire wi;

and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);

or G3(D, w1, E);

endmodule

The port list of a module is the interface between the module and its environment. In this
example, the ports are the inputs and outputs of the circuit, The logic values of the inputs to
a circuit are determined by the environment; the logic values of the outputs are determined
within the circuit and result from the action of the inputs on the circuit. The port list is en-
closed in parentheses, and commas are used to separate elements of the list. The statement

110 Chapter 3 Gate-Level Minimization

is terminated with a semicolon (;). In our examples, all keywords (which must be in lower-
case) are printed in bold for clarity, but that is not a requirement of the language. Next, the
keywords input and output specify which of the ports are inputs and which are outputs. In-
ternal connections are declared as wires. The circuit in this example has one internal con-
nection, at terminal w/, and is declared with the keyword wire. The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descriptive key-
word (and, not, or). The elements of the list are referred to as instantiations of a gate, each
of which is referred to as a gate instance. Each gate instantiation consists of an optional
name (such as G/, G2, etc.) followed by the gate output and inputs separated by commas and
enclosed in parentheses. The output of a primitive gate is always listed first, followed by
the inputs. For example, the OR gate of the schematic is represented by the or primitive, is
named G3, and has output D and inputs w/ and E. (Nore: The output of a primitive must be
listed first, but the inputs and outputs of a module may be listed in any order.) The module
description ends with the keyword endmodule. Each statement must be terminated with a
semicolon, but there is no semicolon after endmodule.

It is important to understand the distinction between the terms declaration and instantiation.
A Verilog module is declared. Its declaration specifies the input—output behavior of the hard-
ware that it represents. Predefined primitives are not declared, because their definition is spec-
ified by the language and is not subject to change by the user. Primitives are used (i.e.,
instantiated), just as gates are used to populate a printed circuit board. We’ll see that once a mod-
ule has been declared. it may be used (instantiated) within a design. Note that Simple_Circuit
is not a computational model like those developed in an ordinary programming language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A Verilog model is a descriptive model. Simple_Circuit describes what primitives form a cir-
cuit and how they are connected. The input-output behavior of the circuit is implicitly speci-
fied by the description because the behavior of each logic gate is defined. Thus, an HDL-based
model can be used to simulate the circuit that it represents.

Gate Delays

All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an output. When an HDL model of a circuit is simulated, it is sometimes neces-
sary to specify the amount of delay from the input to the output of its gates. In Verilog, the prop-
agation delay of a gate is specified in terms of zime units and is specified by the symbol #. The
numbers associated with time delays in Verilog are dimensionless. The association of a time
unit with physical time is made with the ‘timescale compiler directive. (Compiler directives
start with the (') back quote, or grave accent, symbol.) Such a directive is specified before the
declaration of a module and applies to all numerical values of time in the code that follows. An
example of a timescale directive is

timescale 1ns/100ps

The first number specifies the unit of measurement for time delays. The second number spec-
ifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no timescale
is specified, a simulator may display dimensionless values or default to a certain time unit,
usually 1 ns (= 107 sec). Our examples will use only the default time unit.

Section 3.10 Hardware Description Language m

Table 3.6

Output of Gates after Delay
Time Units —mPut ok
(ns) ABC EwlD
Initial — 000 101
Change — 111 101
10 111 001
20 111 001
30 111 010
40 111 010
50 111 011

HDL Example 3.2 repeats the description of the simple circuit of Example 3.1, but with
propagation delays specified for each gate. The and, or, and not gates have a time delay of 30,
20, and 10 ns, respectively. If the circuit is simulated and the inputs change from A, B, C = 0
A, B.C = 1, the outputs change as shown in Table 3.6 (calculated by hand or generated by a
simulator). The output of the inverter at £ changes from 1 to 0 after a 10-ns delay. The output of
the AND gate at w/ changes from 0 to 1 after a 30-ns delay. The output of the OR gate at D
changes from 1 to 0 at r = 30 ns and then changes back to 1 at ¢ = 50 ns. In both cases, the
change in the output of the OR gate results from a change in its inputs 20 ns earlier. It is clear from
this result that although output D eventually returns to a final value of 1 after the input changes,
the gate delays produce a negative spike that lasts 20 ns before the final value is reached.

HDL Example 3.2 (Gate-level model with propagation delays)
/! Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);

output D, E;

input A B C;

wire wl,

and #(30) G1 (w1, A, B);
not #(10) G2 (E, C);

or #(20) G3 (D, w1, E);
endmodule

In order to simulate a circuit with an HDL, 1t is necessary to apply inputs to the circuit so
that the simulator will generate an output response. An HDL description that provides the stim-
ulus to a design is called a rest bench. The writing of test benches is explained in more detail
at the end of Section 4.12. Here. we demonstrate the procedure with a simple example with-
out dwelling on too many details, HDL Example 3.3 shows a test bench for simulating the cir-
cuit with delay. (Note the distinguishing name Simple_Circuit_prop_delay.) In its simplest

112

Chapter 3 Gate-Level Minimization

form, a test bench is a module containing a signal generator and an instantiation of the model
that is to be verified. Note that the test bench (t_Simple_Circuit_prop_delay) has no input or
output ports, because it does not interact with its environment. In general, we prefer to name
the test bench with the prefix 7_ concatenated with the name of the module that is to be tested
by the test bench, but that choice is left to the designer. Within the test bench, the inputs to the
circuit are declared with keyword reg and the outputs are declared with the keyword wire. The
module Simple_Circuit_prop_delay is instantiated with the instance name M1. Every instan-
tiation of a module must include a unique instance name. Note that using a test bench is sim-
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probes (wires) to the outputs of the circuit. (The interaction between the signal gen-
erators of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.33.)

HDL Example 3.3
/Il Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire Dy &
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required

initial
begin
A =1b0; B =1b0; C = 1'b0;
#100 A=1'b1; B=1'b1; C = 1'b1;
end

initial #200 $finish;
endmodule

Hardware signal generators are not used to verify an HDL model: The entire simulation ex-
ercise is done with software models executing on a digital computer. The waveforms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initial keyword is used with a set of statements that begin executing when
the simulation is initialized; initial terminates execution when the last statement has finished
executing. initial statements are commonly used to describe waveforms in a test bench. The
set of statements to be executed is called a block statement and consists of several statements
enclosed by the keywords begin and end. The action specified by the statements begins when
the simulation is launched, and the statements are executed in sequence, from top to bottom,
by a simulator in order to provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C
are each set to 1'b0, which signifies one binary digit with a value of 0.) After 100 ns, the in-
puts change to A, B, C = 1, After another 100 ns, the simulation terminates at time 200 ns. A
second initial statement uses the $finish system task to specify termination of the simulation.
If a statement is preceded by a delay value (e.g., #100), the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms that result

Section 3.10 Hardware Description Language 113

0.0ns 58.0ns 116.0 ns 174.0 ns
Name I T I T A W S W Sl 0l ST o3 G S A T e 9
A I
B [
C I
D]]
E [1
FIGURE 3.38

Simulation output of HDL Example 3.3

from the simulation is shown in Figure 3.38, The total simulation takes 200 ns. The inputs A,
B, and C change from 0 to 1 after 100 ns. Output £ is unknown for the first 10 ns (denoted by
shading). and output D is unknown for the first 30 ns. Output £ goes from | to 0 at 110 ns. Out-
put D goes from 1 to 0 at 130 ns and back to 1 at 150 ns, just as we predicted in Table 3.6,

Boolean Expressions

Boolean equations describing combinational logic are specified in Verilog with a continuous
assignment statement consisting of the keyword assign followed by a Boolean expression. To
distinguish arithmetic operators from logical operators, Verilog uses the symbols (&), (/), and
{~) for AND, OR. and NOT (complement), respectively. Thus, to describe the simple circuit
of Fig. 3.37 with a Boolean expression, we use the statement

assign D = (A & B)|~C;
HDL Example 3.4 describes a circuit that is specified with the following two Boolean expressions:

E=A+BC+8B'D
F=B'C+BC'D’

The equations specify how the logic values £ and F are determined by the values of A, B, C,
and D,

HDL Example 3.4 (Combinational logic modeled with Boolean equations)

/I Verilog model: Circuit with Boolean expressions

module Circuit_Booclean_CA (E, F, A, B, C, D),
output E,F:
input A B, C D;

assignE=A|(B&C)|(~-B&D);
assignF=(~-B&C)|(B&~C &~D).
endmodule

114 Chapter 3 Gate-Level Minimization

The circuit has two outputs E and F and four inputs A, B, C, and D. The two assign state-
ments describe the Boolean equations. The values of E and F during simulation are determined
dynamically by the values of A, B, C, and D. The simulator detects when the test bench changes
a value of one or more of the inputs, When this happens, the simulator updates the values of E
and F. The continuous assignment mechanism is so named because the relationship between
the assigned value and the variables is permanent. The mechanism acts just like combination-
al logic, has a gate-level equivalent circuit, and is referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL statements, just as it can
be drawn in a circuit diagram or specified with a Boolean expression. A third alternative is to
describe combinational logic with a truth table.

User-Defined Primitives

The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by the sys-
tem and are referred to as system primitives. (Caution: Other languages may use these words
differently.) The user can create additional primitives by defining them in tabular form, These
types of circuits are referred to as user-defined primitives (UDPs). One way of specifying a dig-
ital circuit in tabular form is by means of a truth table. UDP descriptions do not use the key-
word pair module ... endmodule. Instead, they are declared with the keyword pair primitive
... endprimitive. The best way to demonstrate a UDP declaration is by means of an example.

HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the following
general rules:

* Itis declared with the keyword primitive, followed by a name and port list.

* There can be only one output, and it must be listed first in the port list and declared with
keyword output.

* There can be any number of inputs. The order in which they are listed in the input
declaration must conform to the order in which they are given values in the table that
follows.

* The truth table is enclosed within the keywords table and endtable.

* The values of the inputs are listed in order, ending with a colon (:). The output is always
the last entry in a row and is followed by a semicolon ().

* The declaration of a UDP ends with the keyword endprimitive.

Note that the variables listed on top of the table are part of a comment and are shown only
for clarity. The system recognizes the variables by the order in which they are listed in the
input declaration. A user-defined primitive can be instantiated in the construction of other mod-
ules (digital circuits), just as the system primitives are used. For example, the declaration

Circuit_with_UDP_02467 (E, F, A, B, C, D);
will produce a circuit that implements the hardware shown in Figure 3.39.

Although Verilog HDL uses this kind of description for UDPs only, other HDLs and
computer-aided design (CAD) systems use other procedures to specify digital circuits in tab-
ular form. The tables can be processed by CAD software to derive an efficient gate struc-
ture of the design. None of Verilog's predefined primitives describes sequential logic. The

Section 3.10 Hardware Description Language

HDL Example 3.5
11 Verilog model: User-defined Primitive

primitive UDP_02467 (D, A, B, C);

output D;

input A, B, C;

/i Truth table for D=f(A,B,C)=X(0,2,4,6, 7).

table

nooA B Cc D /I Column header comment
0 0] ¢
0 0 1 0
1] 1 0 C by
1] 1 1 0;
1 0 0 1
1 0 1 0
1 1 0 e
1 1 1 L H

endtable

endprimitive

I Instantiate primitive
/! Verilog model: Circuit instantiation of Circuit_UDP_02487

module Circuit_with_UDP_02467 (e, f, a, b, ¢, d);

output e.f

input ab.cd;

UDP_02467 (e,a, b, c)

and (f. e, d); /I Option gate instance name omitted
endmodule

FIGURE 3.39
Schematic for Circuit with_UDP_02467

116 Chapter 3 Gate-Level Minimization

model of a sequential UDP requires that its output be declared as a reg data type, and that
a column be added to the truth table to describe the next state. So the columns are organ-
izes as inputs : state : next state.

In this section, we introduced the Verilog HDL and presented simple examples to illustrate
alternatives for modeling combinational logic. A more detailed presentation of Verilog HDL
can be found in the next chapter. The reader familiar with combinational circuits can go directly
to Section 4.12 to continue with this subject.

PROBLEMS

Answers to problems marked with * appear at the end of the book,
3.1* Simplify the following Boolean functions, using three-variable maps:

(a) F(x,y,2)= 2(0,26,7) (b) F(x,y,z) = £(0,2,3,4,6)

(c) F(x,y.z)=2(0,1,2,3,7) d) F(x,y2) = 2(3,5,6,7)
3.2 Simplify the following Boolean functions, using three-variable maps:

(@)* F(x,y.z) = 2(0,1,5,7) (b)* F(x,y.2) = £(1,2,3,6,7)

(©) F(x.y,z) = £(0.1,6,7) (d) F(x,y.z) = £(0,1,3,4,5)

(e) F(x.y,2) = 2(1,3,5,7) () F(x,y.z) = £(1,4,5.6,7)
3.3%* Simplify the following Boolean expressions, using three-variable maps:

(@ F(x,y,2) = xy + x'y'z' + x'yz' () F(x,y2) = x'y' + yz + x'yz’

@) Flx,»z) =xy +yi' +y'¢ d) Fx,y,2) =xyz +x'y'z+ xy'z
3.4 Simplify the following Boolean functions, using Karnaugh maps;

@* F(x, y,2) = £(2.3,6,7) (b)* F(A, B,C, D) = £(4,6,7,15)

(¢)* F(A.B,C,D) = 3(3,7,11,13,14,15) (d)* F(w, x, y.2) = (2.3, 12,13, 14, 15)

(e) F(w.x,y,z) = £(1,4,5,6,7,13) O F(w,x,»2)=2(0,1,58,9)

3.5 Simplify the following Boolean functions, using four-variable maps:
(@) F(w, x,y2) = £(1,4,5,6, 12, 14, 15)
(b) F(A, B.C,D) = 2(1,5,9, 10,11, 14, 15)
() F(w.x,y.2)=2(0,1,4,56,7,8,9)
(dy* F(A,B,C, D) = £(0,2,4,5,6,7,8, 10,13, 15)

3.6 Simplify the following Boolean expressions, using four-variable maps:
(a)* A'B'C'D’ + AC'D' + B'CD' + A'BCD + BC'D
(by*x'z + w'xy’ + w(x'y + xy')
(c) A'B'C'D' + A'CD' + AB'D’ + ABCD + A’'BD
(d) A'B'C'D' + AB'C + B'CD' + ABCD' + BC'D
3.7 Simplify the following Boolean expressions, using four-variable maps:
(a)* w'z + xz2 + x'y + wx'z
(b) C'D + A'B'C + ABC' + AB'C
(c)* AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) xyz + wy + wxy' + x'y
3.8 Find the minterms of the following Boolean expressions by first plotting each function in a map:
(@) xy + yz + xy'z (b)*C’'D + ABC' + ABD' + A'B'D
() wyz + wx' + wxz' (d) A'B+ A'CD + B'CD + BC'D'

39

3.2

Problems 117

Find all the prime implicants for the following Boolean functions, and determine which are es-
sential:

(ay* F(w,x,v,z) = £(0,2,4,5,6,7.8, 10, 13, 15)
(bl"F(A.BC)=I(0.23578 10, 11. 14, 15)
(¢) F(A,B.C.,D) = 2(1,3,4,510,11,12,13,14,15)
d) Flw.x,»2) = Z(1,3,6,7.8,9,12, 13, 14, 15)

(e) F(A,B,C.D) = %(0,2,3,57.8.10,11,13.15)
H Flw,x.y.2) = £(0,2,7,8,9.10,12, 13, 14, 15)

Simplify the following Boolean functions by first finding the essential prime implicants:
(@) F(w.x,»z)=2(0,2,4,56.78,10.13,15)

(b) F(A,B,C,D) = 2(0,2,3,5,7,8,10,11, 14, 15)

(e)* F(A,B,C,) = 2(1,3.4,5,10, 11,12, 13, 14, 15)

(d) F(w,x,y.2)= 2(1,3,6,7.8,9.12, 13, 14, 15)

(e) F(A.B, C) 2(0,2,3,5.7,8,10,11, 13, 15)

f) Flw,x.y.z) = Z(0,2,7.8.9.10, 12, 13, 14, 15)

Simplify the following Boolean functions, using five-variable maps:

(a)* F(A.B.C.D. E) = £(0,1,4,5.16. 17.21.25.29)

(b) F(A.B.C.D) = A'B'CE' + B'C'D'E' + A'B'D' + B'CD' + A'CD + A'BD
Simplify the following Boolean functions to product-of-sums form:

(@) F(w,xy2) = Z(0,1.2.58,10,13)

(b)* F(A.B.C.D) = I (1.3.5.7. 13, 15)

() F(A.B.C.D) =T1(1.3.6.9.11.12. 14)

Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:
(ay*x's' + ¥v'z' + vz’ + xv

(b) ACD' + C'D + AB' + ABCD

(€) (A+C' +D')(A+B +D)A+B+D)A +B+C(')

(d) ABC' + AB'D + BCD

Give three possible ways to express the following Boolean function with eight or fewer literals:
F = B'C'D' + AB'CD' + BC'D + A'BCD

Simplify the following Boolean function F. together with the don't-care conditions d, and then
express the simplified function in sum-of-minterms form:

(@ Flxy.z) = Z(234.6,7) (b)* F{A. B.C. D) = £(0.6, 8,13, 14)
d(x,y.2) = £(0.1,5) d(A, B.C. D) = 3(2,4,10)

(c) F(A B ,C D)= X(4571213.14) (d) F(A B.C.D)= 3(1,3.8 10,15)
d(A.B.C.D) = £(1,9, 11,15) d(A, B.C.D) = 3(0,2,9)

Simplify the following functions, and implement them with two-level NAND gate circuits:
(a) F(A,B,C.D) = A'B'C + AC' + ACD + ACD' + A'B'D’

(b) F(A.B,C.D) = AB + A'BC + A'B'C'D

{c) F(A.B.C)=(A'"+ B' +C')(A" + B') (A" + C")

d) F(AB.C.D)=A'B+A+C + D

3.17* Draw a NAND logic diagram that implements the complement of the following function:

F(A.B.C,D) = £(0,1.2,3,4,8,9,12)

118

Chapter 3 Gate-Level Minimization

3.18

3.19

3.20

3.21

3.22
3.23

3.24

3.25

3.26

3.27
3.28

3.29

Draw a logic diagram using only two-input NOR gates to implement the following function:
F(A,B,C,D) = (A®B) (C®D)

Simplify the following functions, and implement them with two-level NOR gate circuits:

(ay* F = wx' + y'z' + w'ys'

(b) F(w,x,y.2) = 2(1,2,13, 14)

(© Flxy.z) =[(x +y)x' +2))

Draw the multi-level NOR and multi-level NAND circuits for the following expression:

(AB' + CD')E + BC(A + B)

Draw the multi-level NAND circuit for the following expression:
wx +y+z) + xyz

Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

Implement the following Boolean function F, together with the don't-care conditions d, using no
more than two NOR gates:

F(A,B.C.D) = 2(2,4,6,10, 12)
d(A,B,C, D) = £(0,8,9,13)
Assume that both the normal and complement inputs are available.

Implement the following Boolean function F, using the two-level forms of logic (a) NAND-
AND, (b) AND-NOR, (¢) OR-NAND, and (d) NOR-OR:

F(A, B ,C,D) = 2(0,4,8,9,10,11, 12, 14)
List the eight degenerate two-level forms and show that they reduce to a single operation, Explain
how the degenerate two-level forms can be used to extend the number of inputs to a gate.
With the use of maps, find the simplest sum-of-products form of the function F = fg, where
f=abc" +c'd+ a'cd + b'cd’
and

g=(a+b+c +d')b +¢ +d)a +c+d)

Show that the dual of the exclusive-OR is also its complement.

Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd
parity bit.

Implement the following four Boolean expressions with three half adders
D=A®BBC
E = A'BC + AB'C
F = ABC' + (A' + B')C
G = ABC

3.30* Implement the following Boolean expression with exclusive-OR and AND gates:

F = AB'CD' + A’'BCD' + AB'C'D + A'BC’'D

3.33

3.34

3.35*

3.36

Problems 119

Write a Verilog gate-level description of the circuit shown in

(a) Fig.3.22(a) (b) Fig. 3.22(b) (c) Fig. 3.23(a)

{d) Fig.3.23(h) (e) Fig. 3.26 (f) Fig.3.27

Using continuous assignment statements, write a Verilog description of the circuit shown in
(a) Fig. 3.22(a) (b) Fig. 3.22(b) (c) Fig. 3.23(a)

(d) Fig.3.23(b) (e) Fig.3.26 () Fig.3.27

The exclusive-OR circuit of Fig, 3.32(a) has gates with a delay of 4 ns for an inverter, a 8 ns

delay for an AND gate, and a 10 ns delay for an OR gate, The input of the circuit goes from

xyv = 00t xy = 01,

(a) Determine the signals at the output of each gate from s = Otor = 50 ns.

(b) Write a Verilog gate-level description of the circuit. including the delays.

(¢) Write a stimulus module (i.e.. a test bench similar to HDL Example 3.3). and simulate the cir-
cuit to verify the answer in part (a).

Using continuous assignments, write a Verilog description of the circuit specified by the follow-
ing Boolean functions:

Out | = (C + B)(A' + D)B'

Ow 2= (CB' + ABC + C'B)(A + D')

Ow 3 = C(AD + B) + BA’
Write a test bench and simulate the circuit’s behavior.

Find the syntax errors in the following declarations (note that names for primitive gates are
optional):

module Exmpl-3(A, B, C, D, F) /I Line 1
inputs A, B,C,OutputD,F, //Line2
output B // Line 3
and g1(A, B, D); I/ Line 4
not (D, A, C), ! Line 5
OR (F.B.C) /I Line &

endofmodule; I Line 7

Draw the logic diagram of the digital circuit specified by the following Verilog description:

(a) module Circuit_A (A, B, C, D, F);
input A B,C D;
output B
wire w,x.y,zad
and (x.B,C, d);

and (y,a,C),
and (w, z .B);
or (z.y, A)
or (F, x, w);
not (a, A)
not (d, D)

endmodule

120 Chapter 3 Gate-Level Minimization

(b) module Circuit_B (A_gtB, A_ItB, A_eqB, A0, A1, BO, B1);

output A_gtB, A_ItB, A_eqB;
input A0, A1, BO, B1;

nor (A_gtB, A_ItB, A_egB);

or (A_ItB, w1, w2, w3),

and (A_eqB, w4, w5);

and (w1, wb, B1);

and (w2, wb, w7, BO);

and (w3, w7, BO, B1);

not (w, A1);

not (w7, AD);

xnor (w4, A1, B1);

xnor (w5, A0, BO);
endmodule

(¢) module Circuit_C (output y1, input a, b, output y2);

assignyl =a&b;
or (y2, a, b);
endmodule

3.37 A majority logic function is a Boolean function that is equal to 1 if the majority of the variables
are equal to 1, equal to 0 otherwise. Write a Verilog user-defined primitive for a four-bit majori-

ty function.
3.38 Simulate the behavior of Circuit_with_UDP_02467, using the stimulus waveforms shown in

Fig. P3.38.

A
T T I T T T L,ns
10 20 30 40 60 70 80

B
T T I T Lns
10 20 30 40 60 70 80

C

T tns

10 20 30 40 60 70 80

FIGURE P3.38
Stimulus waveforms for Problem 3.38

REFERENCES

References 121

1.

BHASKER, J. 1997. A Verilog HDL Primer. Allentown. PA: Star Galaxy Press.

Cuern, M.D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. Upper
Saddle River, NJ: Prentice Hall.

Hnu, F.)., and G, R. PETERSON. 1981. Introduction to Switching Theory and Logical Design, 3d
ed. New York: John Wiley.

IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language (IEEE Sid 1364-1995). 1995. New York: The Institute of Electrical and Electronics
Engineers.

KARNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transacrions of
AIEE, Communication and Electronics. 72, part | (Nov. 1953): 593-99.

KoHavi, Z. 1978, Switching and Automata Theory, 2d ed. New York: McGraw-Hill.

Mano, M. M., and C. R, KIME, 2004. Logic and Computer Design Fundamentals, 3rd ed. Upper
Saddle River, NJ: Prentice Hall.

McCLuskEey, E. J. 1986, Logic Design Principles, Englewood Cliffs, NI: Prentice-Hall.
PALNITRAR, S. 1996, Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,
CA: SunSoft Press (a Prentice Hall title).

