
Chapter 3

Gate-Level Minimization

3 .1 INTRODUCTION

Gate-level minimization refer s 10 the design ta..k of finding an optimal gate-level imple­
mentation of the Boolean function s describing a digital ci rcuit. Th is task is well under­
stood. but is difficult to execute by manual methods when the logic has more than a few
inputs. Fortun ately. computer-based logic synthesis tools can minimize a large ~I of Boolean
equations efficiently and quicklyNeverthele ss. it is import ant thai a designer understand
the underlyin g mathematical descrip tion and solution of the problem. Thi s chapter serves
as a foundation for your understanding of that important topic and will enable ) 'O U to exe­
cut e a manu al design of simple circuits. preparing you for skilled use of modem des ign
tools. The chapter will also introd uce a hardware desc riptio n language that is used by mod­
em desig n tools.

3 .2 THE MAP METHOD

The comple xity of the digital logic gates that implement a Boolean function is directly related
to the comp lexity of the algebraic expression from which the function is implemented . Al­
though the truth table representation of a function is unique. when it is expressed algebraically
it can appear in many different. but equivalent. forms. Boolean expressions may be simplified
by algebraic means as discus sed in Section 2.4. However. this procedure of minimization is awk­
ward because it lacks specific rules 10 predict each succeeding step in the manipulat ive process.
The map method presented here provide", a simple. straightforward procedure for minimizing
Boolean functions. This method may be regarded as a pictorial form of a truth table. Tbe map
method is also known as the Kam augh map or K-map.
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Sectio n 3.2 The Map Method 71

A x -rnup is a dia gram made up of squares, with each square rep resenting one mintenn of
the function thai is to he minimized . Since any Bool ean function can he expressed as a sum of
miruerrns. it follows that a Boolean function is recognized grap hica lly in the map from the
area enclose d by those square:;, whose mlnterms are included in the function. In fact. the lIlap
present s a visual d iagram of all possible ways a function may he ex pressed in standard form .
By recognizing vario us patterns. the user can derive alterna tive algebraic express ions for the
same funct ion. from which the simplest can he selected.

Th e simplifie d exp ress ion>; produ ced by the m<lp are alw ays in one of the two standard
fo rms: sum of products or produc t of sums. It will be assumed that the simples t a lgebraic ex ­
pression is an algeb raic expression with a minimum number of term s and with the smalles t
possible number of literals in each term. Th is expression produ ces a circuit diagram with a
minimum number of gales and the minimum number of inputs to each gate. We will see sub­
sequently that the simplest expre ssion is not unique: II is sometimes possible to find two or more
expre ssions thut satisfy the minimization criteria. In that case . either solution is satisfac tory,

Two-Variable Map

The two-variable map is shown in Fig, 3, I(a). The re are four m lruerms for two variables; hence,
the map consists of four squares. one lo r each minterm . The map is redrawn in (bJ 10 show the
relationship betwe en the squares and the two variables .r and y, The 0 and 1 marked in eac h row
and co lumn designa te the values of variables. Variable x appears primed in row 0 and unprim ed
in row I . Similarly. .v appears primed in column 0 and unprimed in column I.

! ~• 0 I-, -
0 .t 'y ' x)

,1 "" " ,
I xv .rv

(a ) (I;l J

flctURE 3.1
Two-variable map

If we mark the squares whose minterms belong 10 a given function. the two -variab le map
becomes another usefu l way to represent any one of the 16 Boolean funct ions of two variables.
As an example. the function xy is shown in Fig. 3.2(a). Since xy is equal to "'3. a ) is placed
inside (he square that belongs to t1l 3 ' Similarly. the function .r + y is represented in the map
of Fig. 3,2(bJ by three squares marked with t ' s. Th ese squares are found from the rrnmerms of
the function :

1711 + "' 2 + 111 3 :::: .t'y + xy' + xy = .r + )'
The three squares co uld also have been determ ined from the intersection of variable .r in the
second row and variable .\' in the second column. which enclo ses the area be longing to .r or j-,

In each example, the minterms at which the function is asserted are ma rked with a I.
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FIGURE 3.2
Representation of functions in the map
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FIGURE 3 .3
Three-variable map

Three -Variable Map

A three-variable map is shown in Fig. 3.3. There are eight minterms forthree binary variables;
therefore, the map consists of eight squares. Note that the rninterms are arranged. not in a bi­
nary sequence. but in a sequence similar to the Gray code (Table 1.6). The characteristic of this
sequence is that only one bit changes in value from one adjacent column to the next. The map
drawn in part (b) is marked with numbe rs in each row and each column to show the relation­
ship between the squares and the three variables. For example. the square assigned to I1lscor­
responds to row I and column 01. When these two numbers are concatenated, they give the
binary number lOt , whose decimal equiv alent is 5. Each cell of the map corresponds to a
unique minterm, so another way of looking at square ms = xy'Z is to consider it to be in the
row marked x and the column belonging to y' z (column 01). Note that there are four squares
in which each variable is equal to I and four in which each is equal to O. The variable appears
unprimed in the former four squares and primed in the latter. For convenience. we write the vari­
able with its letter symbol under the four squares in which it is unprimed.

To understand the usefulness of the map in simplifying Boolean functions, we must recog­
nize the basic property possessed by adjacent squares: Any two adjacent squares in the map dif­
fer by only one variable, which is primed in one square and unprimed in the other. For example,
I1ls and m7 lie in two adjacent squares. Variable J is primed in 1115 and unprimed in 11l7' where­
as the other two variables are the same in both squares. From the postulates of Boolean algebra.
it follows that the sum of two mintenn s in adjacent squares can be simplified to a single AND
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term co nsisting of only IwO literals. To clari fy th is co ncept con..ide r the sum of two adjacent
squares such as m~ and "'7;

"'~ + "'7 = .(y ' : + xy: "" x: (y' + y) EO .oc:

Here. the two squares d iffer by the variable y. which can be removed when the sum of the two
rninterrns is formed. Th us. any two minterms in adjacent squares (vertically or hori zontally. bul
not diagonally. adjacent) that are ORed together willcause a removal of me dissi milar varia ble.
The next four examples explain the procedure for min imizing a Boo lean funct ion with a map.

-tt·MIQ"··
Simpli fy the Boo lea n funct ion

F (x.y. : ) ~ ~(2.). ... 5)

First. a I is marked in each rninterm that represents the function. Thi s is shown in Fig , 3.4. in
which the squares for rnimerrns 0 10. 011 . 100. and 101 are marked with ts. The next step is
10 find possib le adjace nt squares , These are ind icated in the map by two rectangles, each en ­
closi ng two l 's. The upper right recta ngle represents the area enclos ed by x'y, Th is area is de ­
term ined by o bserving that the two-square area is in row 0, corresponding [0 .r", and the last
two co lumns. co rres pondi ng 10 y. Similarly. the lower lef t rectan gle represent s. the produ c t
term .rv'. (The seco nd row represe nts .r a nd the two left col umns represe nt y ' .) The logical
sum of these two prod uct terms gives the simplified expression

F : .ty + .t y'

:,,: x',,
OJ 01 " 10, -,

0

-.
..

FIGURE 3.4
MapforExample3.1,F(x., y, z ) = ~ ( 2, 3, 4. 5 ) = x · y ~ xy'

•
In certa in cases. I WO squa res in the map are coust de red 10 be adjacent even thou gh they do

not touc h each othe r. In Fig , .'. 3, "'u is adjace nt to 11I 2 and 11I4 is adjacen t to"'6 beca use the
minte rms differ by one variable . Th is difference ca n be readily verifi ed alge braica lly;

"'0 -+ "'2 '" ,f 'y ':;' + x'y :' '" .,':'(y ' + y ) '" x': '

"'4 + m~ = X:" ' : ' -+ .f:." :' "" .ec' + C", + :,.) "" .t: '

Consequently, we must ITltld ify the de finition of adjacent sq uare.\ to include this and other sim­
ilar cases . We do so by considering the map as be ing d rawn on a surface in which the righ t and
left edges tou ch each ot her to form adjacent square ...
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Simplify the Boolean function

F(•• y, , ) - ~ ( J . 4. 6. 7)

The map for this function is shown in Fig. 3.5. There are four squares marked with l 's, one
for each minterm of the function . Two adjacent squares are combined in the third column to
give a two-lit eral term yz. The remaining two squares with J's are also adjacent by the new
definition. These two squares. when combined, give the two-literal term xz'. The simplified
function then beco mes

F = yz + xt. '

XYI '

) .

" .,
00 01 11 10... -, .. .. -0 I -

jI
.. ..

1 I 1 I .
~ .

.,
,

.VQle: xy ' t ' + XYI' - u '

FIe'URE J .S
Map for Example 3.2. F(x, y, z) = I (3, 4, 6,7) - yz + xz'

•
Con...ider now any combination of four adjacent squares in the three-variable map. Any such

combination represents the logical sum of (our minrermsand results in an express ion with only
one literal. As an example. the logical sum of the four adjacent mintcrms 0, 2, -I, and6 reduces
to the single literal term z':

rnO + "'2 + m.. + rn6 = x 'y';:' + x 'y;:' + xy ' ;:' + x.v:. '

= x':.' (J ' + y ) + x::: ' (y ' + y)

= x' :::' + xz' = ::: ' (x' + x) = z'

The number of adjace nt squares that may be combined must always represent a number
that is a power of two, such as 1, 2,4, and 8. As more adjacent squares are combined, we ob­
tain a productterm with fewer literals.

One square represents om: minterm. giving a term with three literals.

Two adjacent ~uares represent a term with two literals.

Four adjacent squares represent a term with one literal.

Eight adjacent square.. encompass the entire map and produce a funct ion that is always
equal 10 I.
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Simplify the Boo lean function

F( x. y.:) = ~ (O . 2. •. 5. 6 )

Th e map for F i ....hewn in Fig. 3.6. First. we com bine the four adjac ent o;quares.in the first and
last columns 10 give:the ..ingle literal term z'.The remaining single square. represennng rrnnterm
S. i.. co mbi ned with an adjacent !>quare that has.alrea dy bee n used o nce . Th is. is not o nly per ­
mis..ible . 001 rather desirable. because the two adiacenr squares give the two-li teral term -lJ '
and the single square represen ts the three -lite ral mi nrcrm xy 'z. Th e simplified functio n is

F = :' + .\').'

\ 'Z

.I" z , ·t (Xl OJ

---,.,, ~, ,~. m ,

O ',~

x { I , ~1~:~, "':>" 1
I

n

"
I I 10

yz '

f1C;URE 3 .6
Map for Example 3.3, F(JI, y, z l = ~ ( O, 2, 4, 5,6) = z : + xy'

•
If a func tio n is not e xpressed in ...um-of-rninterms form . it is possible 10 use the map 10 ob­

tain the mintenns of rbe function and then simpli fy the function to an expression with a mini­
mum num ber of term s. II h nece..."ary. howe ver. to make sure tha t the algebraic expres sion is
in sum-of-prod ucts fo rm. Eac h prod uct term can tIC pla ne d in the map in o ne, IWO. or mort'
squares . Th e min term s of the functio n are then read d irec tly from the map .

11111E13'P"C·
Let the Bool ean funct ion

F = A'C + A' B + AB'C + BC

(a) Express this funct ion as a sum of min rerm s.

(b) Find the minimal o;um·of·producIH Xpres.l<l io n,

Three prod uct terms in the expre ssion have two literal s and are represent ed in a three-..-ariable
map b y two squares eac h. The IWO squares co rres pond ing to the firs t term. A'C. are found in
Fig. 3 .7 from the coi ncidence of A' ( f r-,t row ) and C uwomidd le columns) 10 gi..·e squares 001
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FIGURE 3.7
Map for Example 3.4, A'C + A' B + AB'C + BC = C + A'B

and Oi l . Note that, in marking I 's in the squares, it is poss ible to find a 1 already placed there
from a preceding term . This happens with the second term, A'B. which has I's in squares Oi l
and 010. Square 011 is common with the first term. A 'C , though. so only one I is marked in
it. Continuing in this fashion, we determine that the term AB'C belongs in square 101. corre­
sponding to minterm 5, and the term BC has two I 's in squares 0 II and Ill . The function has
a total of five minterms, as indicated by the five I 's in the map of Fig. 3.7. The mintenns are
read directly from the map to be 1,2. 3, 5, and 7. The function can be expressed in sum-of­
minterms form as

F (A , B, C) = ~ ( l . 2, 3, 5, 7)

The sum-of-products expression. as originally given. has too many terms. It can be simplified.
as shown in the map, to an expression with only two terms:

F =C + A'B

•
3 .3 FOUR -VARIABLE MAP

The map for Boolean functions of four binary variables is shown in Fig. 3.8. In (a) are listed
the 16 minterms and the squares assigned to each. In (b). the map is redrawn to show the reo
lationship between the squares and the four variables. The rows and columns are numbered in
a Gray code sequence, with only one digit changing value between two adjace nt rows or
columns. The minrerm corresponding to each square can be obtained from the concatenation
of the row number with the column number. For example. the number s of the third row ( I I )
and the second column (0 1), when concatenated, give the binary number 1101, the binary
equiva lent of decimal 13. Thus, the square in the third row and seco nd column represe nts
mintenn m 13.

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each
other. In addition, the map is considered to lie on a surface with the top and bottom edges , as
well as the right and left edges, touching each other to form adjacent squares. For example,
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FIGURE 3.8
Four-variable map
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,

/n o and m 2 fonn adjacent squares. as do 111) and "tn- The combination of adjacent squares that
is useful durin g the simplification process is easily determined from inspec tion of the four­
variable map:

One square represents one minrerm. giving a term with four literals.

Two adjacent squares represent a term with three literal s.

Four adjacent squares represent a term with two literals.

Eight adjacent squares represent a term with one literal.

Sixteen adjacent squares produce a function that i.. nlways equal tc I.

No other combination of squares can simplify the function. The next two example" show
the procedure used to simplify four-variable Boolean function...

MUiMRIII&
Simplify the Boolean function

F( u-,x.y, , ) : ~(O.1.2.4.5 .6. 8.9 . 12.13. 14 )

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by I's in the map of Fig. 3.9. Eight adjacent squares marked with Fs
can be combined 10 fonn the one literal term v'. The remaining three I's on the right cannot
be combined to give a simplified leon ; they must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller is the number of literals in the term.
In this example. the top two ls on the right are combined with the top two I's on the left to
give the term 11" ;:' . Note that it is permissible to use the same square more than once, We are
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y'
z

N ote: W'Y ' l ' + W'Y l' = w'a'
XY'l' + XYl' = Xl '

FIGURE 3.9
Map for Exampl e 3.5, F( w, x, y, z) ,., L (O, 1, 2,4, 5, 6, 8, 9, 12, 13, 14) ='

y' + w'z' + lCZ'

now left with a square marked by I in the third row and fourth column (square 111 0). Instead
of taking this square alone (which will give a term with four literals), we combine it with
squares already used to form an area of four adjacent squares. These squares make up the two
middle rows and the two end columns. giving the term xs', The simplified function is

F =' y' + w'z' + Xl '

•

Simplify the Boolean function

F =' A'B'C' + B'CD ' + A'BCD' + AB'C'

The area in the map covered by this function consists of the squares marked with I's in Fig. 3.10,
The function has four variables and, as expressed. consists of three terms with three literals each
and one term with four literals. Each term with three literals is represented in the map by two
squares. For example, A' B'C ' is represented in squares ()(X)J and 0001. The function can besim­
plified in the map by taking the l 's in the four comers to give the term B'D' . This is possible
because these four squares are adjacent when the map is drawn in a surface with top and bot­
tom edges, as well as left and right edges, touching one another.The two left-hand I 's in the top
row are combined with the two I's in the bottom row to give the term B'C' . The remaining 1
may becomb ined in a two-square area to give the term A'eD' . The simplified function is

F = B'D ' + B'C' + A'CD'

•
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FIGURE 3.10
Ma p fo r Example 3.6, A'B 'C ' + 8'CD ' + A'BCD' + AB'C = B'D' + B' C + A'C D'

Prime Impllcants

In choo sing adjacent squares in a map, we must en sure that ( I ) all the minterms of the func­
tion are covered when we combine the squares, (2) the number of ter ms in the ex pression is
min imized , and (3) there are no redundant terms (i.e .. minrermsalrea dy cove red by other terms).
Sometimes there may he two or more e xpress io ns thai satisfy the simplification criteria. Th e
proc ed ure for co mbining squares in the map may be made more syste matic if we understand
the meaning of IWO spec ial type s of terms. A prime implicant is a product term obtained by com­
bining the maximu m possible number of adjacent squares in the map . If a minrerm in a sq uare
is cove red by o nly one prime implicant. thai prime imp lica nt is said to he essential.

Th e pri me implica nts o f a functi on ca n be ob tained fro m the map by combining all poss i­
b le maximum number s of squares. Thi s mean s that a sing le I on a map re presents a prime im­
plica nt if it is not adj ace nt to any ot her l's. Two adjace nt Fs form a prime implica nt. provided
tha t they arc not within a gro up of four adjacent sq uares . Four adjace nt I 's form a prime im­
plica nt if the y are not withi n a g roup of eight adjacent squares. and so on. The esse ntia l prime
implicants are fo und by looking at each square marked with a I a nd checki ng the number of
prime implicanrs that cov e r it. The prime implican t is esse ntial if it is the only prime implicant
that co ver s the mintenn .

Consider the followin g four -variable Boolea n function:

F(A. B. C. D) ~ ~( O. 2. 3. 5. 7. 8. 9. 10. II . 13. 15)

The minterms or the function are marked with Fs in the maps of Fig. 3.11. The partial map (pan
(a) o r the figure) shows two essential prime implicants. each formedby co llapsing fo ur ce lls into
a term having only two litera ls. One term is esse ntial beca use there is only one way to include
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FIGURE 3.11
Simplificat ion using prime implicants
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(b) Prime implicants CD, B'C,
A D , and AB'

minterm mowithin four adjacent squares. These four squares define the term B' D' . Similarly.
there is only one way that mintenn m~ can becombined with four adjacent squares, and this gives
the second termBD. The two essential prime implicantscovereight minterms. The three minrerms
that were omitted from the partial map (m3. me. and mil) must beconsidered next.

Figure 3.11(b) shows all possible ways that the three minterms can be covered with prime
implicants. Minterm ffl3 can be covered with either prime implicant CD or prime implicant
B'C. Minterm 111 9 can be covered with either AD or AB' ,Minterm III II is covered with anyone
of the four prime implicants. The simplified expression is obtained from the logical sum of the
two essential prime implicants and any two prime implicants that cover minterms m3. m9. and
mll ' There are four possible ways that the function can be expressed with four product terms
of two literals each:

F = BD + B'D' + CD + AD

= BD + B'D ' + CD + AB'

= BD + B'D ' + B'C + AD

::: BD + B'D ' + H'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the alternatives that are available for obtaining a simplifiedexpression.

The procedure for finding the simplified expression from the map requires that we first de­
termine all the essential prime implicants. The simplified expression is obtained from the log­
ical sum of all the essential prime implicanrs, plus oilier prime implicants that may be needed
to cover any remaining mintenn s not covered by the essential prime implicants. Occasionally.
there may be more than one way of combining squares, and each combination may produce an
equally simplified expression.
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3.4 FIVE -VARIABLE MAP

Maps for more than fou r varia ble" are not as simple 10 use a" maps for (our or fewer variable s.
A five-variable map need ..32 square.. and a ..is-variable map need s tH squares . When the num ­
ber of variable s become s large, the num ber of ~uares becomes c..xcesslve and the geometry for
com bining adjacent squares becomes more involved.

The five-variable map is shown in Fig. 3.12. It consi..t.. of 2 four-variable map s \\,ilh vari ­
abies A. B. C. D. and E. Variab le A di..tingui shes betw een the two maps. as indica ted at the top
of the dia gram. The le ft-hand four-vari able map repre sen ts lhe 16 ~uares in which A = O.
and the other fou r-vari ab le map rcpre ..ents the square .. in which A = I . Minterm s n through
15 belong with A = 0 and mim erm .. Ie throu gf 3 1 with A "" I. Eac h four-variable map re­
tain.. the previou sly defined adjacency when taken separately. In addition. each square in the
A "" 0 map is adjace nt to the corre sponding squa re in the A = I map . For example. mimcnn
.. is adjacent 10 min tenn 20 and minrerm 15 to 3 1. The best way to visualize this new rule for
adja cent squares is to co nsider the two half maps 3!> bein g one on top of the o ther. Any two
squares Ihat fall one ove r the other are co nsidered adjac ent .

By followi ng the proced ure used for the five-variable map. it is possible to co nstruct a six­
variable map with 4 four-variable ma~ 10 ob tain the required 64 square s. Maps with six or more
variables need (00 man y squares and are Impracrical to use . The alternative b 10 employ com.
pute r programs specifica lly written to facili tate the simplifica tion of Boolean functions with a
large number of variables .

By inspection. and lak ing Into account the new defini tion of adjacent s-quares. it is po....ible
10 show that an) ' 21 adjacent squ ares, for k "" (0. 1. 2. . . . • n) in an e-van able map . will rep ­
resent an area that give s a term of n - k literal s. For this statement 10 have any meanin g. how­
ever, n must be larger tha n L When n = k , the entire are a of Ihe map is co mbined 10 give the

A = J
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FIGURf 1.12
Five-variable map
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Table 3.1
1M Rdationship~ tM Numbn 01 AdIOCtl1t Squorts and tM
Numbn at UttrOli In tht Tmn

Number of
Ad jacen t Number of literals
Squares In a Tenn In an n-varlable Map

« 2' 0 = 2 0 = J n =4 0 = J

0 1 2 3 4 s
I 2 I 2 3 4

2 4 0 1 2 3
3 8 0 I 2
4 I. 0 I, 32 0

identity function. Table 3. 1 shows the relationship between the number of adjacent squares
and the numbe r of literals in the term. For example. eight adjacent squares combine an area in
the five-variable map to give a term of two literals.

Simplify the Boolean function

F(A.B.C.D.£) ~ I (O.2. 4.6. 9.13.21 .23.25.29.31 )

The five-variable map for this function is shown in Fig. 3.13. There are six minterms from
oto 15 that belong to the pan of the map with A "" O. The othe r five minterms belong with
A "" I. Four adjacen t squares in the A "" 0 map are combined to give the three-literal term
A' B' E' . Note that it is necessary to include A' with the term beca use all the squares are as ­
sociated with A = O. The two foquares in co lum n 0 I and the last two rows are common to
bot h part s of the map. Therefore. they constitute four adjacent squares and give the three­
literal term BD ' E. Variable A is not included here because the adjacent squares belong to
both A = 0 and A = I. The term ACE is obtained from the four adjac ent squares that arc
enti re ly with in the A = I map . The simplifie d func tion is the logical sum of the three
terms:

F = A'B 'E ' + BD ' E + ACE

•
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FIGURE J,n
Map for Exam ple 3.7, F · A'BT + BD'f ... ACE

3 .5 PRODUCT-Of -SUMS SIMPLIfiCATION

The minimized Boolean Iunctions derived from the map in all previous examples were ell­
pressed in sum-of-prod ucts form . With a minor modifi cation.the produc t-or-sums form can be
obtained .

The procedu re for obta ining a minimized function in product-or-sums form fo llow s from
the basic properties of Boole an function !'> . The 1'5 placed in the squares of the map represent
the rnimerm s of the function. The mintcnn s not included in the srandard sum-of-prodocts form
of a fun ct ion denote the complement of the function . From this obse rvation. we see thai the
co mp leme nt of a funct ion is represe nted in the map by the squares not marked by I's . If we
mar k the em pt)' squares by Irs and combine them into valid adjace nt MJuarcs, we obtain a
simplified ex pressio n of the com plement of the function {i.e.• of F' ). The complement of
F' gi ves us back the function F. Bec ause of the ge neralized DeMorgan '.. theorem . the func­
lion so obtained is autom atically in produc t-of-su ms for m. The best .....ay to sbo ..... th is is by
example.



84 Chapter 3 Gate-Level Minimization

C
AS CD 00 01 II.. o, CO

00 I I 0 BCD '

BC D' o,

01 0 1 0

-. .. 0 . B

II 0 0 0 o ~

A o, o, ..,
10 I 1 0 1 AB

o
NOlt : BCD' + BCD' - RD'

FIGURE 1.14
Map for Example 3.8, F(A, B, C, D) = ~ ( O, r, 2, 5, 8, 9, JO) = B' D' + B'C' + A'CD ­
(A' + B' )( e' + D' )( 8' + D)

Simplify the: following Boolean function into (a) sum-of-products form and (b) product-of­
sums fonn:

F(A, B, C, D) = ~ (O, 1.2, 5, 8,9,10)

The ls marked in the map of Fig. 3.14 represent all the minterms of the function. The
squares marked with O' s represent the min terms not included in F and therefore denote the
complement of F. Combining the squares with I 's gives the simplified function in sum-of­
products Conn:

(a) F = S'D' + B'C' + A'C'D
If the squares marked with O's are combined, as shown in the diagram, we obtain the
simplified complemented function:

F ' = AS + CD + 80 '

Applying DeMorgan 's theorem (by taking the dual and complementing each literal as de­
scribed in Section 2.4), we obtai n the simplified function in product-of-sums form:

(b ) F ~ (A' + B' )(e' + D' )(B ' + D)

•
The implementation of the simplified expre ssions ob tained in Example 3.8 is shown in

Fig. 3.15. The sum-of-products expression is implemented in (a) with a group of AND gates.
one for each AND term . The ou tputs of the AND gales are connected to the inputs of a sin­
gle OR gale . The same function is implemented in (b) in its produ ct-of-sums form with a
gro up of OR gates. one for each OR term. The outputs of the OR gales are connected to the
inputs of a single Al\'D gale. In each case. it is assumed that the input variables are directly
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Gate implementati ons of the function of Example 3.8

,1'01F '"' f A ' .. B' )( e' ... D' )(H' ... 01

Table 3.2
Truth Tobie of Function f

K

II
II
II
II
I
I
I
I

y

II
II
1
I
II
II
I
I

z

II
I
II
I
II
I
II
I

,
II
1
II
1
I
II
I
II

available in their co mplement. ..0 inverte rs are noe needed. The configuration pat tern estab­
livhed in Fig. 3.15 is the general form by whichan)' Boolean function is implemented when
expressed in one of the standard form s. A~D gates are co nnected 10a single OR gale when
in sum-of-prod ucts form : OR gates are connected to a single AND gale when in product-of­
"urn" fonn . Either configuration forms two level... of gales. Thus. the implementatio n of a
funct ion in a standard form is said 10be a two-level implementatio n.

Example 3.8 showed the procedure for obtaining the produ ct-of-sums simplification when
the function is originally expres sed in the sum-of-mime nu s ca nonica l fOnTI. The procedure is
also val id when the function is originally expressed in the product-of-maxrerrns canonica l
form. Consider , for exa mple, the truth table rhat defi nes the funct ion F in Table 3.2. In sum­
of-r ninrerms fOnTI. this function is expressed as

F(x. X.c) = ~ ( I . 3. 4. 6)

In product-of-maxrerms form. it is exp res..ed as

' (x. x. ' ) ~ n (O.2.5. 7)

In other words. the ls of the function represent the mintcrm .. and the D's represent the max­
terms. Tbe map for this function is shown in Fig. 3.16. One can start simp lifying the function
by fin.1marking:the I' " for each minterm thai the function is a I . The remaining squares arc
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00..
o

01

u '

II

,
10..

FIGURE 3.16
Map for the function of Table 3.2

marked by D's. H, instead, the product of maxterm s is initial ly given, one can SIal1 marking D's
in those square s listed in Ihe function; the remaining squares an: then marked by J's . Once the
1'5 and n's are marked, the function can be simplified in either one of the standard forms. For
the sum of products, we combine the J's to obtain

F = .t ' , + x, '

For the product of sums, w e com bine the D's to obta in the simplified co mplemented funct ion

F' = .rz + x' , '

which shows that the exclusive-OR functi on is the complement of the equi valence function
(Section 2.6). Taking the complement of F' , we obtain the simplified function in product -of­
sums fonn:

F = (x' + z')(x + z)

To enter a function expressed in product -of-sums form into the map, use thecompleme nt of the
function to find thesquares that are to be marked by n's. For example, the functi on

F = (A' + B' + C' )(B + D )

can be entered into the map by first taking its complement, namely,

F' = ABC + B'D'

and then marki ng D's in the squares represe nting the minterms of F' , The remain ing squares
are marked with t 's.

3 ,6 DON 'T-CARE CONDITIONS

The logica l sum of the mmrerm s assoc iated with a Boolean function specifies the conditions
under which the function is eq ual to I. The funct ion is equal to 0 for the rest o f the minte nns.
This pair o f conditions assumes that all the combinations of the values for thevariables of the
function are valid. In pract ice, in some applications the functio n is not speci fied for certain
combinations of the variables. As an exam ple, the four-bit binary code for the decimal digits
has six combinations that are not used and conseq uently are considered to be unspecified .
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Functions that have unspecified outputs for some input combinations are called incompieteiy
specified fun ctions, In most applications. we simply don't care what value is assumed by the
function for the unspecified minrerms. For this reason, it is customary to call the unspecified
minterms of a function don 't-care conditions. These don't -care conditions can be used on a
map to provide funh er simplification of the Boo lean expression.

A don 't-care minterm is a combination of variables whose logical value is not specified. Such
a miruerm cannot be marked with a I in the map. because it would require that the function al­
ways be a I for such a combination. Likewise. putting a 0 on the square requires the function
to be O. To distinguish the don ' r-cere condition from l 's and a 's. an X is used. Thus. an X in­
side a square in the map indicates thai we don 't care whether the value of a or I is assigned 10

F for the particular mintcrm.
In choos ing adjacent squares to simplify the function in a map. the don' t-care minrerms

may be assumed to be either 0 or I. When simplifying the function. we can choose 10 include
each don 't -care minterm with either the Fs or the O's. depending on which combination gives
the simplest expression.

• "3'&''-
Simplify the Boolean function

F(II ·, x. y, Z) :::: ! (J. 3. 7, 11. 15)

which has the don' t-care conditions

d( w.x,y,,: ):::: ~ ( O,2,5 )

The minterms of F are the variable co mbinations that make the function equal 10 I. The
minterms of d are the don ' t-care minterms that may be assigned either 0 or I. The map sim­
plif icarion is shown in Fig. 3. 17. The minterms of F are marked by I 's. those of d are marked

y
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f iGURE: ) .17
Example with don't -care cond it ions
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by X's. arxI the remaining squares are filled with a's. To get the simplified express ion in sum­
of-prod ucts foen, we must include all five I's in the map , but we may or may nOI include any
of the X's, depending on the way the function is simplified. The termJZcove rs the four minterms
in the third col umn. The remaining mintenn, m l , can be combi ned with minterm m 3 10 give
the three-literal term _ .•..1'.:. However, by including One! or two adjacent X's we can combine
four adjacent squares to give a two- literal term. In part (a) of the diagram, don't -care numerms
oand 2 are included with the t 's, resulting in the simplified funct ion

F = )·: +M... ..r'

10 pan (b ). don' t-caremmrerm 5 is included with the t's. and the simplified funct ion is no w

F = JZ + w':

Either one of the precedin g two expressions satisfies the conditions stated for this example.

•
The previou s example hass shown that the don' t-care minterrns in the map are initially marked

with X's and are considered as being either Dor I. The choice betwe en 0 and I is made de­
pending o n the way the incompletely specified function is simplified. Once the choice is made,
the simplified function obta ined will consist of a sum of minrerms thai includ es those mintenns
which were initially unspecified and have been chosen to be included with the ls. Consider
the two simplified expression s obtained in Example 3.9:

F(",. ..r,y,: ) = y: + ",'x ' = ~ (O,I , 2 , 3 , 7, 11. 15 )

F("" .r, J,:) = j'z + _.': - "!(I , 3, 5, 7, I I, 15)

Both expressio ns include mintenns 1, 3, 7, I I , and 15 lhat make the function F eq ual to I . The
don' t-care mintenns 0,2, and 5 are trea ted differently in each expression. The firs t expression
includes min terms 0 and 2 with the t 's and leaves minterm 5 with the n's. The second expres­
sion includes minterm 5 with the I 's and leaves minterms 0 and 2 with the D's. The IWO ex­
pressio ns repre sen t t.....o functions that are not algebraically eq ual. Both cover the specified
minterm s of the function. but each covers different don't-care minterms. As far ax the inco m­
pletely specified function is concerned, either expression is acceptable because the o nly d if­
ference is in the value of F for the don ' t-care mlnrerms.

If is also possible (0 obtain a simplified prod uct-o f-sums express ion for the functio n of
Fig. 3. 17. In thi s case. the only way to combine the D's is to include don 't-care minrerms 0
and 2 with the D's to give a simplified complemented funct ion :

F' = z' + wj-'

Taking the complement of F' gives the simplified expression in produ ct-of- sums form :

F(w. x. y. , ) = , (w' + r) = ! ( 1.3. 5. 7. 11. 15)

10 this case, we include minterms 0 and 2 with the D's and mimcnn 5 with the t ' s.
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3 . 7 N A N D A ND N O R I M PL EME NTATIO N

Digital circuits art frequ ently con structed with NAND or NOR gales rather than with AND and
OR gal es. :-JAND and NOR gale~ arc ear...ier to fabricate with electronic components and are
the bask gales used in all Te digitallogic families. Because of the prominence of ~A!':D and
NOR gales in the design o f d igital circui ts. rule s and procedures haw been developed for the
co nversion from Boolean fun ctions g ive n in term s o f ASD. OR. and f'OT into equivalent
NASD and NOR logic diagram ....

NAND (Inuit.

The NASD gate is.said 10 be a universal gate beca use an) ' digi tal system can be implemented
with it. To sho w thai any Boolean funct ion can be implemented with NAND gates. we need
only show thatthe logical operations ofA~D. OR. and complement can beobtained with NAND
ga le~ alo ne. Th is is indeed shown in Fig. 3.18.The- complement operation is obtained from a ore­
input NAN D gate that behave s exactly like an inve rter, The AN D operation req uires t.....o NAND
gales. The first prod uces the NAND ope ration and the second inverts the logica l sense of the sig­
nal. The OR operation is achieved through a NAN D gale with additional inverters in eac h input.

A convenient way to implement a Boo lean function wit h NAND gat es is to obtain the sim­
plified Boolean function in term s of Boolean ope rators and then co nve rt the function to NAN D
log ic . The convers ion of an algebraic expression from AN D. OR. and complement to NAN D
ca n be done by stmplc circuit munipularion techn iques thai ch ange AND-OR d iag rams to
NAND diagrams.

To facilita te the co nversion to NA~D logic . it is con ven ient to define an alternative graphic
5)'01001for the: gate. Two equivalent graphic symbols for the NASD gate art shown in Fig , 3.19 .

A~O

OR '=:J=o-(.I"·.v')' '' .r + y

!

FIGURE 1. 18
logic ope rat ions with NAND gates

~ =t::=)-- (x,·=r

(a) A SD·in \"('n

~v--- x' ....1' · ... =' . (.'."=) '

(b) (n\ 'en ·O R

FIGURE 1.19
Two gr aphic sym bols for th e NAND gat e
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The AND-mvertsymbol has beendefined previously andconsists of an ANDgraphic symbol fol­
lowed by a small circle ne~ation indicator referred to as a bubble. Alternatively, it is possible to
repeesem a NAND gate by an OR graphic symbol that is preceded by a bubble in each inpuL The
inverl.QR symbol for the NAND gale follows DeMcq:an's theorem andthe con vention that the
negation indicator oenoees com plementation. The 1\1.<0 graphic symbols' represen tations an: use­
ful in !he anal ysis and design of NAND circuits. When both symbols are mixed in tbe same
diagram, the circuit is said to be in mixed notation .

Two-Level Implementation

The imp lementa tion of Boolean functions with NAND gates requires that the functions be in
sum-of-products form. To see the relationship between a sum-of-product expre ssion and its
equiv alent NAND implementation, co nsider the log ic diagrams dra wn in Fig. 3.20. Alllhree
diagrams are equ ivalent and implement the function

F = AB + CD

The funct ion is implemented in (a) with AND and OR gates. In (b), the AND gates are re­
placed by NAND gates and the OR gate is replaced by a NAND gate with an OR-invert graph ic
symbol. Remember thai a bubb le denotes complementation and two bubble s along the same
line represent double complementation, so both can be removed . Removing the bubbles on the
gales of (b) produces the circuit of (a). The refore. the two diagrams implement the same func­
tion and are equivalent.

In Fig. 3.20(c) . the OUlpUI NAND gale is redrawn with the A.."lD-in \'ert graphic symbol.
In drawing NA ND logic d iagram s. the circuit shown in ei ther (b) or (c) is acce ptable. The

A--r=
B - -L.cJ

c - f:>.i;;;,\

D--==
(. )

F

A--r- ,

B - -L-/
F

A _-r=,

B- ==
F

(b)

RGURE 3.20
Three ways to Implement F = AB + CD

(0)
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one in (b ) is in mixed no tation and represents a more direct relat ionship 10 the Boole an
ex press ion it implements. The NAND implementat ion in Fig. 3.20(c ) can be verified alge­
braically. The function it implements can easi ly be converted to sum-of-products form by
Delvtorgan's rheorem:

F ~ « AB)'(CD)') ' ~ AB + CD

IIW3iAIu.
lmplememthe following Boolean function with NAND gates:

F(x. r. r) ~ ( 1.2. J. 4. 5. 7)

The first step is to simplify the function into sum-of-products form. This is done by means of
the map of Fig. 3.21(a). from which the simplified function is obtained :

F = xy' + x 'y + ::

The two-level NAND implementation is shown in Fig. 3.2 1Ib) in mixed notation. Note thai input
:: must have a one-input NAND gate (an invenen to compensate for the bubble in the second­
level gate. An alternative way of drawing the logic diagram is given in Fig. 3.2 )(c) . Here, all
the NAND gates are drawn with the same graphic symbol. The inverter ....,ith input z has been
removed. but the input variable is. complemented and denoted by z'.

•

F = xy' .... x'y +;:

x.\"

[a

(b)

FIGURE 1.21
Solution to bample ] ,10

x

"x'
F

! '

t:

(0)

F



92 Chapter 3 Gate-level Minimiza tion

The procedure desc ribed in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic d iagram
from a Boolean funct ion is as follows:

I . Simplify the function and express it in sum-of-prod ucts form.

2. Draw a NAND gale for each product tenn of the expression that has atleast two literals.
The inputs 10 each NAN D gate are the litera ls of the term. This procedure produces a
group of first-level gates.

3. Draw a single gate using the AND-inver1 or the Invert-Ok graphic symbol in the second
level, with inputs coming from outputs of first-level gales .

4. A term with a single literal requires an inverter in the first level. However, if the single literal
is complemented, it can beconnected directly to an input of the second-level NAND gate.

Multilevel NAND Circuits

The standard form of expressing Boolean functions results in a two- level imple mentat ion.
There are occasions. however, when the desig n of digital systems results in gati ng structures
with three or more levels. The most common procedure in the design of multilevel circu its is
10express the Boolean function in terms of AND, OR , and complement ope rations. The func­
tion can then be imp lemented with AN D and OR gates. After that, if necessary. it can be con­
vened into an all-NAND circuit. Consider. for example. the Boolean function

F = A(CD + B) + BC'

Although it is possible to remove the parentheses and reduce the expression into a standard sum­
of-products form. we choose to implement it as a multilevel circu it for illustr ation . The
AND-OR impleme ntation is shown in Fig. 3.22(a). There are four levels of gating in the cir­
cuit. The first level has two AN D gates . The secon d leve l has an OR gate followed by anAND
gate in the third level and an OR gale in the fourth level. A logic diagram with a pattern of a1­
ternating levels of AND and OR gales can easily be convened into a NAN D circuit with the
use of mixed notation. shown in Fig. 3.22(b) . The procedure is to change every AND gale to
anAND-invert graphic symbol and every OR gate 10 an inven-OR graphic symbol.The NAND
circuit performs the same logic as the AND- OR diagram as long as there are two bubbles along
the same line. The bubb le associated with input B causes an exira com pleme ntation. which
must be compensated for by chan ging the input literal to B' .

The genera l procedure for conve rting a multileve lAND-QR diag ram into an all-NAND di-
agram using mixed notation is as follows:

l. Convert all AN D gates 10NAN D gates with AND-inver1 graphic symbols.

2. Convert all OR gates to NAND gates with invert-Ox graphic symbols.

3. Check all the bubbles in the diagram. For every bubble that is nOI compensated by an­
other small circle along the same line, insert an inverte r (a one-input NAND gate ) or
complement the input literal.

As another example. consider the multilevel Boo lean function

F = (AB' + A'B)(C + D' )
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FIGURE 3.22
Implementing F ~ A(CD + 8) + 8('

F

F

The AND-OR implementation of this function i.. shown in Fig. 3.23(a) with three levels of gat­
ing. The conversion to NAND with mixed notation is presented in part <b) of the diagra m. The
two additional bubbles a..sociated with inputs C and 0 ' cau..e these two literals to be comple­
mented to C' and D. The bubble in the output NAND gate compleme nts the output value. so
we need to insert an inverter gate at the output in order to complemcnt thc signal again and get
the original value back.

NOR Implementation

The NOR operatio n is the dual of the l'\AND operation. Therefore. all procedures and rules for
NOR logic are the duals of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gale that can be used ( 0 implement any Boolean function.
The imp lementation of the complement. OR. and AND operations with NOR gates is shown
in Fig. 3.24. The com plement operation is obtained from a one -input NOR gate that behaves
exactly like an inverter. The OR operation requires two NOR gates. and the AND operation is
obtained with a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3.25. The OR-invert
symbol defines the NOR operation as an OR follo wed by a complement. The invert ·AND
symbol complements eac h input and then performs an AND operation. The two symbols
desig nate the same NOR operati on and are logicall y identical because of DeMorgan 's
theore m.
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F
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(b) NA ND gates

FIGURE 3.2 3
Implementing F = (AS' + A'sHe + D' )
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FIGURE 3.24
Logic operations with NOR gates
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(b) Invert-AND

FIGURE 3.25
Two graphic symbols for the NOR gate
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A two-le vel implementatio n with NOR gates req uires that the funct ion be simplified into
product-of-sums fonn . Remem ber that the simplified produc t-of- sums ex pression is obtai ned
fro m the map by combining the D's and compleme nting. A prod uct-of- sums express ion is im­
plemented with a first level o f OR gates that produce the sum terms foll owed by a seco nd­
leve l AND gate to prod uce the product. The transformation from the OR-AND diagram to a
NOR diagram is achieved by changing the O R gates to NO R gates with Ok-invert graphic
symbols and the AND gate to a NOR gate with an inven -AND graphic symbol. A single litera l
te rm going into the second-level gate must be complemented. Fig . 3.26 shows the NO R im­
plem entation of a functio n ex pressed as a product of sums:

F = (A + BHC + D )E

The OR-AND pattern can easily be detected by the removal of the bubbles along the same line.
Variab le E is co mpleme nted to co mpe nsat e for the third bub ble at the input of the second-leve l
gate.

The procedure for convert ing a multilevel AND-OR dia gra m to an aU-NO R dia gram is
similar to the one prese nted for NAN D gale s. For the NOR cascowe must co nvert each OR gate
to an OR- inven symbo l and eac h AND gale to an invert-AND symbol. Any bubble that is not
compensated by another bub ble alon g the same line needs an inverter. or the co mplementation
of the inp ut literal.

The transformation of the AND-OR diagram of Fig. 3 .2 .~ ( a) into a NO R diag ram is shown
in Fig . 3.27. The Boo lean funct ion for this circu it is

F = ( AB' + A'BHC + D' )

.~
B .

<~ > ,D ' . .

E'

FIGURf 3.26
Implementing F == (A + SHe + DlE

A

B' --""""'"

~, ==~E:?r-----"
FIGURf 3.27
Implementing F == (AS' + A'sHe+ D' ) with NORgales
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Tbe equivalent AND--OR diagram can be recog nized fro m the NOR diagram by removing all
the bubbles. To compensate for the bubbl es in four inputs. it is necessary to complement the
corresponding input literal s.

3. 8 OTH ER TWO -LEVEl IMPLEMENTATION S

Tbe types of gates most often found in integrated circuits are NAND and NOR gates. For this
reason. NA.\,'lJ and NOR logic implementations ace themost Important from a practi cal point
o f view. Some (but not all) NM'D or l'OR gates al low thepossibi lity of a wire connection be­
tween the outputs of two gates to provide a specific logic function . Thi s type of logic is cal led
wired logic. For exam ple. ope n-collectocTIL NAND gates. when tied together. perform wired­
AND logic. (The open-co llector TTL gale is shown in Chapter 10. Fig. 10.11 .) Th e wired­
AND logic performed with two NAND gates is depicted in Fig. 3.28(a). The AND gate is
drawn with the lines going through the center of the gate to d istinguish it from a conventional
gate. Th e wired-AND gate is not a physical gate. but only a symbol to designa te the function
obtained from the indicated wired connection . The logic function imp lemented by the circuit
of Fig. 3.28(a) is

F = (AB)'· ·· (CD)' = (AB + CD)' = (A' + B' )(C' + 0 ' )

and is called an AND--OR-INVERT function .
Similar ly. the NORou tputs of EeL gates (see Figure 10.1 7) can betied toge ther to perfonn

a wired-Ole function. The logic function imple mented by the circuit of Fig. 3.28(b) is

F - (A + B)' + (C + 0 )' - I(A + B)(C + D)]'

and is cal led an OR- AND-INVERTfunction.
A wired-logic gale does not produ ce a phys ical second-level gate . since it isjust a wire con­

nect ion . Nevertheless, for discussion purposes, we will con sider the circuits of Fig . 3.28 as
two-level implementations. The first level con sists o f NAND (or NOR) gates and the second
level has a sing le AND (or OR) gate . The ....ired connection in the graphic symbol will be omit­
ted in subsequent discussions.

t-t-- F- (A B + CD)'

c ---r))~:::J
D

(a) Wired-AND in open-collecto r
"tTL NAND gales.

(A l'D-OR- LNVERT)

A

B

+7-- F = [(A + B)(e + D) J'

(b) w ired-Og in EeL gales

(OR-ASD-INVERT )

FIGUR£ 3 .28
Wired logic
(a) Wired-AND logic with two NAND gate s
(b) Wired·OR In emitter-co upled logic (ECL) gates
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Nondegenerate Forms

It will be instruc tive from a theoretica l po int of view to find out how many two-level co mbi­
nations of gates are possibl e . We consider four types of gales: AND. OR.1"lAND. am) NOR.
If we assign one type of gate for the first level and one type for the second level . We find that
there are 16 possib le co mbinations of two- level forms. (The same type of gate ca n be in the first
and seco nd leve ls. as in a NAND-NAND implementation.) Eight of these combinations are said
to be degenera te forms because they degenera te to a single operation. Th is can be seen from
a circuit with AND gates in the first level and an AND gate in the seco nd level. The output of
the circuit is merely the AND function of all input variables. The remaining eight nandegenerate
form s produce an implementation in sum-of-prod ucts form or producr-of-surns form . The eight
nondegcncrate forms arc as fo llows:

AN D-OR
NAN[}-NAND
NOR-Q R
OR-NAND

OR- AND
NOR-NOR
NAN[}-AND
AN [}-NOR

The first gate listed in eac h of the forms constitutes a firstleve l in the implemen tation. The sec­
ond gate listed is a singte gate placed in lhe l'C'.':oOO tevet. Note thal any two (orms listed on the
same line are duals of each other.

The AND-OR and OR-A ND form s are the basic two-level form s discussed in Sec tion 3.4.
The NAND-NAND and NOR- NOR forms were presented in Section .3.6. The remaining four
forms are investigated in this section.

AND-OR-INVERT Implementation

The tWO fonn s NAN D-AND and AND-NOR are equivalent and ca n be trea ted toge ther. Both
perform (he AND-OR- INV ERT function. as she.....n in Fig. 3.29. The AND-NOR form re­
sembles the AND-OR form. but with an invers ion done by the bubble in the output of the
NO R gate . It implement s the function

F ~ (AB + CD + E )'

A A

8 8

CC
F F F

[) D

>: >:

(b) AN D- NO R (c) NAND- AND

A - -r--.,
8 - -L--/

>: ------'

laJA ND-NOR

FIGURE 3.29
AND-OR-INVERT circuits, F '" (AB + CD + f )'
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By using the alternative graphic symbol for the NOR gate. we obtain the diagram of
Fig. 3.29(b). Note that the single variable E is not complemented, beca use the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the input ter­
minal of tile second-level gate to the output terminals of the first-level gates. An inverter is need­
ed for the single variable in order to compensate for the bubble. Alternatively, the inverter can
be removed. provided that input E is complemented. The circ uit of Fig. 3.29(c) is a
NAND-AND fonn and was shown in Fig. 3.28 to implement the AND-OR- INVERT function.

An AND-OR impleme ntation requ ires an expression in sum-of-products form. The
AND-OR- INVERT implementation is similar, except for the inversion. Therefore, if tile comp­
lement ofthe function is simplified into sum-of-products fonn (by combining the D's in the map).
it will be possible to implement F' with the AND-OR part of the function. When F' passes
through the always present output inversion (the LNVERT pan ), it will generate the output F
of the function. An example for the AND-OR- INV ERT implementation will be show n
subsequently.

OR-AND-INVERT Implementation

The OR- NAND and NOR..Q R formsperformthe OR- AND-INVERT functio n, as shown in
Fig. 3.30. The OR-NAND form resembles the OR-AND form, exce pt for the inversion done
by the bubble in the NAN D gate. It implements the function

F = [( A + S)( e + D )E]'

By using the alternative graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3.30(b). The circuit in (c) is obtained by moving the small circ les from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig. 3.30(c) is a NOR-QR
fonn and was shown in Fig. 3.28 to implement the OR-AND-INVERT function.

The OR- AND-INVERT implementation requires an express ion in product-of-sums fonn.
If the compleme nt of the function is simplified into that form, we can implement F' with the
OR- AND part of the function. When F' passes through the INVERT part . we obtain the com­
plement of F', or F, in the output.

E--C>o-JE - - - -'E - - - -'

A A A

8 8 8

C CC
~ FF F

D D '" D

(a) OR- NAND (b) OR-NAND (c) NOR--OR

Flc;URE ) .30
OR-AND-INVERT circuits, F ", [(A + S)(e + D)E )'



Section 3.8 Other Two-level lmp leme nta tlo ns 99

Table 3.3
Implementorionwith Other Two-Level Forms

Equiv al ent
Nondegenerat e

Fonn

(e)

AND-N OR

(b) '

NAND-AND

NOR...D R

Implements
t he

Funct ion

AN~R-INVERT

OR-A~D-I /,;VERT

Sim pli fy
F'

Into

Sum-of-products
form by combining
O's in the map.
Product-of-sums
form by combmmg
I 's in the map and
then complementing.

To Get
a n Output

of

F

F

"Form etl) requires an inverter fur a ~ing le literal term

Tabular Summary and Example

Table 3.3 summarizes the procedures for implementing.a Boolean function in any one of the
four 2-1e\"e1 forms. Because of the INVERT pan in each case. it is convenient to usc the sim­
plification of F' n he complement) of the function. When F' is implem ented in one uf these
forms. we obtain the complement of the function in the AND-OR or OR- AND form. The four
z-leve l forms invert this function. giving an output that is the complement of F' . This is the
normal output F.

Implement the function of Fig. 3..'.] la) with the four z-leve l forms listed in Table 3.3.
The complement of the function is simplifi ed into sum-of-products form by combining the n's
in the map:

}-" ' = x 'y + x,\" + z

The normal output for this function can be expressed as

F = ( x'y + xy' + z}'

which is in the AND-OR- INVE RT form , TIle AND-NOR and NAND-AND implementations
are shown in Fig. 3.3 1(b). Note that a one-input NAN D. or inverter, gate is needed in the
NAND-AND implementation. but not in the AND-~OR case. The inverter can be removed
if we apply the input variable z' instead of 0;.

The OR- AND-INVE RT forms requ ire a simplified expression of the complement of the
function in product-of-sums form. To obrain this expression. we first combine the l 's in the map:

F = x' ,v',:' + xy::'
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F : x'y'z ' +xyz'
F .. x 'y +xy'+z

xyz'

y
Y<• 00 01 11 10... ., ., .,
0 - ' 0 0 0

:l '
., ., ., ..

~0 0 0 1 -

x'y'z'

,
(a> Map simplifICation in sum of products

, '--"=~

Y--wo=
.'- -,",,= "
y-==

F F

, ---..J ,--j>>-J

A ND-NO R NA ND- AND

(b) F - (.l 'y + xy' + Z)'

FF

y
, -J---L_/

" '-'~'y'
z -J---L_;

OR- NAND NO R-DR

(c)F - [(x + y+ z)(x' + y' + Z)]'

.', -,,,",,
y'
, -J---L= ;

FIGURE 3.3 1
Other two-level impleme ntat ions

Then we take the complement of the function:

F' :; (x + y + z)(x' + y' + a)

The normal output F can now be expre ssed in the form

F : [(x + y + z)(x ' + y' + z)l "

which is the OR-AND-INVERT fonn . From this expression, we can implement the function
in the OR- NAND and NOR- OR forms, as shown in Fig. 3.31(c).

•
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3 .9 EXCLUSIVE -OR FUNCTION

The exclu sive-Og (XOR). denot ed by the symbol fB . i'i a logical operation that performs the
following Boolean ope ration:

x $ y = .ty' + x 'y

The exclu sive-Og i!o eq ual to I if only .r is equal 10 I or if only.' is equal to I (i .e.. .t and J dif­
fer in value], bUI nOI when both arc equ al to I o r when hOlh are equal to O. The exclusive­
SOR. also known as equivalence. performs the following Boolea n operation:

( .t e r) ' = x.\' + x'y '

The exclusive-NOR is equa l 10 I if bot h .r and y are equa l 10 I or if both are equal 10 O. The ex­
clusive-NOR can be shown 10 be the complement of the excl usive -Og by means of a trut h
table or by algebraic manipulatio n:

(.t fB y )' "" (xy' + x' y )' = ( x ' + yH .\ + y') "" xy + x 'y '

The follow ing ide ntities apply to the exclusive-OR operation:

x ffiO = .t

.t e I "" .e'

.re x = 0

xEl x' "" I

x 8y' "" x ' my '" (x m y )'

Any of these identities can be proven with a lrulh table or by repla cing the iII operation by its
equivale nt Boolean expression . Also . il can be ..hewn that the exclusive-OR ope ration i.. bot h
co mmuranve and associative: thai i, .

A EIl B = 8 E1lA

and

( A Ell B) Ell C = A Ell (B EIl C) = A Ell 8 E1l C

Thi s mean s tha i the two input s 10 an exclusive-O R gate ca n he interchanged without affecting
the operation. II also means thai we can evaluate a three-variable exclusive-OR operation in any
orde r. and for this reaso n. three or more variables can be expressed without parentheses. Thi s
would imply the poss ibility of using exclusive-O R gates with three or more inputs. However,
multip le-input excluslve-Ok gates are difficull to fabricate with hardware . In fact. even a IW()­
input function is usually con structed with other types of gates . A two-Input excl usive-O k func­
lion is constructed with co nventiona l gates using two inverte rs.lWoANO gates . and an OR gate.
a.. shown in Fig. 3.3 2(a). Figure 3.32(b) shows the implementation of the exclu sive-OR with
four NAS O gates . The first :'JAr\O gate perform.. lhe operation (x.")' "" (x' -I- y' ).The other
two-le ve l NA~D circuit produces the sum of product s of its inputs :

(.t' + y' )x -I- (.t' + y') .\' = .t y' + _t'y = .r e .'"
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,-T"--------r;~;;.,

,-4-.------i.~/

(a) With A:'Io"D-OR-NOT gat"

, - 4-.- - - - - 4:::.-/
(b) With NAND gates

FI(,URE 3.32
fxdusiv~OR implementations

Onl y a limited number of Boolean functions can be expressed in terms of exclu sive-OR
operations. Nevertheless, this function emerges quite often during the design of digilal sys­
tems . It is particularly usefu l in arithmetic operations anderror detection and correction circuits .

Odd Function

The exclusive-OR ope ration with three or more variables can be converted into an ordinary
Boolean function by replacing the 6:) symbol with its equivalent Boolean expression. In par­
ticular. the three-variable case can be converted to a Boolean expression as follows:

A EIl B EIlC ~ ( AB' + A' B)C' + (AB + A'B' )C

AB'C' + A' BC' + ABC + A' B'C

~ ~ (l , 2, 4, 7)

The Boolean express ion clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary 10the two­
variable case , in which only one variab le must beequal to 1, in the case of three or more vari­
ables the requ irement is that an odd number of variables beequal to 1. As a consequence. the
multiple-variable exclusive-OR ope ration is defined as an oddfun ction.

The Boolean funct ion derived from the three- variab le exclu sive-OR operation is expressed
as the logical sum of four minterms whose binary numerical values are 001. 010. 100. and
II I . Each of these binary numbers has an odd number of I 's. The remain ing four minterms
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not incl ude d in the function are 000. Oi l , 101 , and 110. a nd they have an ev en num ber of I' s
in their b inary numer ical va lues , In ge ne ral, an e-var iable ex clus ive- OR fu nction is an odd
func tio n de fined as the logical sum of the 2"(2 mi nte rms who se binary num erica l va lues
have an odd number of I 's ,

The de finition of an odd function can be clarified by plornng it in a map , Figure3.33( a) shows
the map for the three -variable exclusive -Ox function , The four minterm s of the functio n are a
un it di stance apa rt from each othe r. The odd function is ide nti fied fro m the fou r minterms
whose binary values have an odd number of Fs . Th e complement of an odd function is an
e ven function. A... sho wn in Fig. _' .33(b ). the three -variable eve n functi on i ... eq ual to I when
an even number of its variables is equal to I (incl uding the co ndi tion tha t none of the variables
is equal to I ).

The thre e-inpu t odd function is implemented b)' means of two- input cxclu... ive-Ox gates, a..
shown in Fig. 3 . 3~{al . The co mplement of an odd function is o bta ined by replacing the output
gate with an exctu sive-N tjk gale. as shown in Fig. 3 ,341b),

Con sider now the four -variable exclu sive-O R o peration. By algebraic man ipulation, we can
o btain (he sum of ml nrcrms for mis function :

A $B $ C $ D = ( AB' + A' B) $ (CD ' + C D )

= ( AB' + A' B)(CD + C D' ) + ( AB + N B' )(CD ' + C' D)

: ~ ( 1. 2 , • . 7, 8. 11. 13. 1. )

There are 16 minterms for a four-variab le Boole an function. Half o f lhe rninrerm s have binary
numerical values with an oddnumber of l 's: the othe r half of the nu nrerrns have binary nume rical

BC
A

"0 01 II 10.. -, " -,
o 1 1

-r -. _. -,
1 1

BC
A 00 01 11 10

~ -, "
0 , I

I," -, •. ~

I ,A

C

(a ) (kid function F . A e H e c
C

(h ) Eve n func1ion F '" (A Gl B E£l C)'

FIGURE 3.)3
Map for a three-variable exclu sive-OR function

fa ) J. inpul odd function lb ) 3-input e\'C' Dfunct ion

FIGURE 3.34
l ogi( diagram of odd and even functions
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C C

•

. CD
00 01 Il 10.. m, m, .,

00 1 I

» , m, m, ..
01 1 1

m" m" m" m"
Il 1 1

m, m, m" m"
10 1 I

A

A

•

CD• 00 01 Il 10.. m, m, .,
00 1 1

m, m, ., ..
01 1 I

m" m" m" m"
Il 1 I

m, m, m" m"
10 1 I

A

A

D

(a) Odd function F = A EEl B E!l e mD

FIGURE 3,35
Map for a four-variable exclustve-OR function

D

(b) EII!:n [ unction F - (A EEl 8 E!l C mO J'

values with an even number of 1'5. In ploni ng lhe function in the map, the binary numerical value
for a minterm is determined from the row and column numbers of the square thai represents the
mintenn. The map of Fig. 3.35(a) is a plot of !he four-variable excluslve-Og function. This is
an odd function because the binary values of all the minrerms have an odd number of I's. The
complement of an odd function is an even function. As shown in Fig. 3.35(b), the four-variable
even function is equal to I when an even number of its variables is equal to I.

Parity Generation and Checking

Excluslve-Og functions are very useful in systems req uiring error detection and correc tion
codes . As discussed in Section 1.7, a parity bit is used for the purpose of detecting errors dur­
ing the transmission of binary information. A parity bit is an extra bit included with a binary
message 10 make the number of l 's either odd or eve n. The message, including Ihe parit y bit,
is transmitted and then checked at the receiving end for errors. An error is de tected if the
checked parity does not correspond with the one transmitted. The circuit thai generales the par·
ity bit in the transmitter is called a parity generator. The circ uit that checks the parity in the
receiver is called e parity checker.

As an example, consider a three-bit message to be transmitted together with an even parity
bit . Table 3.4 shows the truth tab le for the parit y generator. The three bits-c-r . y, and z­
constitute the message and are the inputs to the circuit. The parity bit P is the output. For even
parity. the bit P must be generated to make the total number of I' s (including P) even. From
the truth table, we see that P constitutes an odd function because it is equal to I for those
minterms whose numerica l values have an odd numbe r of I's. Therefore, P can be ex.pressed
as a three-variable exclus ive-Ok function:

P = xEB yEB z

The logic diagram for the parity generator is shown in Fig. 3.36(a) .
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Table 3.4
Everl.Parity,Gerlerator Trurh Table

Th ree -Bit Message Parlt)' Bit

• Y z P

0 0 0 0
0 () I I
0 I 0 I
u I I 0
I 0 0 I
I 0 I 0
I I II 0
I I I I

.~

:~ r

(al 3-hit even par ity genera tor tb) ~·h it eve n parity checker

c

FIGUR E. J.J6
logic diag ram of a parity generator and checker

The three bits in the message. toge ther with the parity bit. arc transmitted to their destina­
tion. where they are applied 10a parity-checker circuit to check fo r possible errors in the trans­
mission. Since the information was transmitted with even parity. the four bits rece ived must have
an even number of ls. An error occurs durin g the transmission if the four bits rece ived have
an odd number of ls, indicating that one hit has changed in value during transmission. TIle out­
put of the parity checker, denoted by C.will be equal 10 I if an erro r oc curs-ctbar is, if the fou r
bits received have an odd number of ls. Table 3.5 is the truth table for the even-pari ty checker,
From it. we sec that the function C con..ists of the eight mintcrms with binary numerical val­
ues having an odd number of Fs. The table corre sponds to the map of Fig. 3.35(a ), wh ich
represents an odd function . Th e parity checker can be implemented with exclusive-OR gales:

C = x$yEB::EB P

The logic diagram of the p:lrity checker ill shown in Fig. 3.36( b).
It is worth noting that the parity generator can be implemented with the circuit of Fig. 3.36(b)

if the input P is connected to logic 0 and the output is marked with P. This is because z e 0 = c.
causing the value of :.10 pass through the gate unchanged. The adva ntage of this strategy is that
the sa me circuit can be used for both parity generation and checking.
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Table 3.S
£v~n.Parfty.Checlcer Truth Tobie

Four Bits Parity Error
Received Check

x y z P C

0 0 0 0 0
0 0 0 I J
0 0 1 0 1
0 0 1 1 0
0 1 0 0 I
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 I
I 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1'5. As a consequence, they can be implemented with exclusive-OR
gales. A function with an even num ber of f' s is the complement of an odd function. II is im­
plemented with exclusive-OR gales, except that the gate associated with the output must be an
exclusive-NOR to prov ide the required co mplementation.

3 .10 HARDWARE DESCRIPTION LANGUAGE

Manual methods for designing logic circuits are feasible only when the circu it is small. For any­
thing else [i.e.• a practical circui t), designers use com puter-based design tools. Coupled with
a correct-by-construct ion methodo logy, computer-based design tools leverage the creativity
and effort of a designer and reduce the risk of producing a flawed design . Prototype integrated
ci rcuits are too expensive and time consuming to build, so all modem design tool s rely on a
hard ware descripti on language to describe , design, and test a circu it in software before it is
ever manufactured .

A hardware description language (HDL) is a com puter-based language that describes the
hardware of digital systems in a textual fonn. It resembles an ord inary computer programming
language, such as C, but is spec ifically oriented to describing hardware struc tures and the
behavior of logic circuits. It ca n be used to represent logic diagrams, truth tab les. Boolean
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expre ssio ns. and comple x abstrac tions of the behavior of a digital system. One way to view an
HDL is to observe that it describes a relat ionshi p betwe en signa ls that are the inputs to a ci r­
cuit and the signals that are outputs of the c ircuit. For exa mple. an HD L descript ion of an AND
gate describes how the log ic va lue of the gate 's output is determi ned by the log ic va lues of its
inp uts.

As a documentation langu age. an HD L is used to repre sent and doc ume nt d igita l sys tems
in a form that can be read by both hum ans and compute rs and is suitable as an exc hange lan­
guage be tween design ers. The languag e content can be stored . retrieved . edi ted . and tran smit­
ted ea sily and processed by computer software in an effici ent manner.

HDL s are used in seve ral majo r steps in the de sign n ow of an integrated ci rcu it: de sign
entry, fu nct ional simulation o r ver ific ation. log ic synthes is. tim ing ve rifica tion. and fault
simulation.

Design e/!try crea tes an HDL· based descrip tion of the functionalit y that is ( 0 be imple­
me nted in hardware. Depend ing on the HDL . the descri ption can be in a variety of forms:
Boolean logic equ ations. truth tables. a netlist o f interconnected gates. or an abstract behav ioral
mod el. The HDL mod el may also represent a part ition of a larger ci rc uit into smaller inter­
co nnected and interact ing functional unit s.

Logic simulation displays the be havior of a digi tal sys tem thro ugh the use of a computer, A
simulator interprets the HDL de script ion and eith er produ ces readab le output. suc h as a time­
ordered seq ue nce of input and output signal values. or dis plays wavefo rms of the signa ls. The
simulation of a c ircuit pred icts how the hardware will beh ave before it is actua lly fabrica ted.
Simu latio n allows the de tec tion of function al errors in a de sign without having to ph ysica lly
create and ope rate the circuit. Erro rs that are detected du ring a simu lation can be correc ted by
modi fying the appropriate HDL stateme nts. The stimulus (i.e.. the logic values of the inputs to
a circ uit) that tests the functiona lity of the design is ca lled a fest bench. Th us. to simulate a dig­
ital system. the de sign is first described in an HDL and then verified by simulating the de sign
and checking it wit h a test ben ch . ....-hlch is also wr itte n in the HDl. An alte rnative and more
complex approach reli es on fo rmal mathem atical method s to prove that a c irc uit is function­
ally correc t. We will foc us e xclusive ly on simulation.

Logic synthesis is the process of der ivi ng a list o f physic al compone nts and the ir intercc n­
nections (called a nettistvfrom the model o f a d igi tal system des cribe d in an HD L. The netl ist
ca n he used to fabricate an integrated ci rcuit or 10 layout a printed ci rcuit hoa rd with the hard­
ware co unterpart s of the gates in the list. Logic synthesis is simi lar to co mpiling a prog ram in
a co nve ntional high-level langu age . The d ifference is that. instead of producin g an object code.
logic synthes is produce s a datab ase descri bing the e lemen ts and structure of a ci rcu it. The data ­
base specifies how to fabrica te a phys ica l integrated circuit that implements in silicon the func ­
tionality de scribed by statements made in an HDL. Logic synthes is is based on form al exact
procedures.that imp leme nt dig ital ci rcuits and add resses that part of a dig ital design whi ch ca n
be automated with computer software. The design of tod ay's large. co mplex c ircuits is made
possible by log ic synthes is so ftware.

TIming verification confirm s that the fabricated integ rated ci rcu it will ope rate at a speci ­
fied speed. Because eac h log ic gate in a ci rcuit has a propagatio n de lay. a signal transition at
the inp ut o f a circ uit ca nnot immedia tely cause a change in the log ic va lue of the out put o f a
c ircu it. Prop agat ion del ays ultima tely limit the speed at wh ich a ci rcuit can o perate. Tim ing
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verification chec ks each signal path to verify that it is not com promised by propagation delay.
This step is done after logic synthesis spec ifies the actua l device" thai will compose a circui t
and before the circuit is released for production.

In VLSI circui t dcsign,jaull sitmlwrion compares the behavior of an ideal circuit with the
behavior of a circuit that contains a process-ind uced flaw. Dust and other part iculates in the
etmospbere of the clean room can cause a circuit to be fabric ated with a fault. A circuit with
a fault will not exhibit the same fuoctiooa.Iity as a fault -free circuit. Fau lt simulation is used
to identify input stimuli thai can be used 10 reveal the difference between the faully circuit and
the fault -free circuit . These test patterns will be used to test fabricated devices to ensure that
only good devices are shipped to thecustomer. Test generation and fault simulation may occur
al different steps in the design process. but they are always done before prod uction in order
to avoid the disaster of producing a circu it whose internallogic cann ot be tested.

Companies that design integrated circuits use proprietary and public HDLs. In the public
domain. [here are two standard HDLs that are suppo rted by the IEEE : VHDL and Verilog .
VHDL is a Dep artment of Defense-mandated language . (The V in VHDL stands for the first
letter in VHSIC. an acronym for very high spee d integrated circui t.) Verilog began as a
proprietary HDL of Cadence Design Systems . but Cadence transferred co ntrol of Verilog to
a consortium of comp anies and universities known as Open Verilog International {OVO as a
step leading to its adopt ion as an IEEE standard. VHDL is more diffi cult to learn than Verilog.
Becau se verilog is an easier language than VHDL to describe. learn. and use. we have cho­
sen it for this book . However. the Verilog HDLdescriptions listed throu ghout the book are nOI
ju st about Verilog. but also serve to introd uce a design methodology based on the co ncept of
co mputer-aided mode ling of digi tal systems by means of a typical hardware descri ption
language. Our emphasis will be on the modeling. verification. and synthesis (both manual
and automated) of Veri log models of circuits having specified behavior. The verilogHDL
was initially approved as a standard HDL in 1995: revised and enhanced versions of the lan­
guage were approved in 2001 and 200 5. We will address only thos e feature" of veri log.
including the latest standard. tha t support our discussion of HDL·based design meth odology
for integrated circuits .

Module Declaration

The language refe rence manual for the verilog HDL presents a syntax that describe s precisely
the co nstruc ts tha t ca n be used in the language . In particular. a Veri log model is composed
of text using keywords. of which there are abo ut 100 . Keyw ords are predefined lowe rcase
ident ifiers that define the language co nstructs. Examples of keywords are module. end ­
module. Input. output. wire. a nd. o r . and no t. For clarity. keywords will be displayed in
boldface in the text in all exa mples of code and whe rever it is appropriate 10 call attention
to their use . Any text between two forward slashes (/1) and the end of the line is interpreted
as a co mment and will have no effect on a simulat ion using the mod el. Mu ltiline comments
begi n with , .. and terminate with ..t, Blank spaces are ignored . but they may not appear with­
in the text of a keyword. a user-specified identifier. an opera tor. or the represe ntation of a num­
ber. Veri log is case sensi tive. which means that uppercase and lowe rcase letters are
distinguishable (e.g .• not is not the same as SOT). The term module refers to the text enclosed
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FIGURE 1.17
Circuit to d em onstrate an HDl

by the keyword pair modul e ... end module. A module is the fundamental descriptive unit
in the Verilog language. h is declared b)' the keyword module and must always beterminated
by the keyword endmod ule.

Combinational logic can bedescribed by a schematic connection of gates. by a set of Boolean
equations. or by a truth table. Each type of description can be developed in Verilog. We will
demonstrate each style. beginning with a simple example of a Vcrilog gate-level description to
illustrate some aspects of the language.

The HDLdescription of the circuit of Fig. 3.37 is shown in HDLExample 3.1. The first line of
text is a comment (optional) providing useful informcrion 10 the reader. The second line begins with
the keyword module and starts the declaration (description)of the module: the last line completes
the declaration with the keyword endmudulc. The keyword module is followed by a name and a
list of pons. The name (Simple_CirrI/it in this example) is an identifier. Identifier.' are names given
to modules. variables (e.g.. a signal). and other elements of the language so that they can be ref­
erenced in the design. In general. we choose meaningful names for modules. Identifiers arecorn­
posed of alphanumeric characters and the underscore LJ. and are case sen...itive . Identifiers must
sian with an alphabetic character or an underscore. but they cannot stan with a number,

HOI. Exam ple 3.1 (Combinational logic modeled with pr imitives)

1/Verilog model of circuit of Figure 3.37. IEEE 1364- 1995 Synlax

modu le
output
input
wire

Simple_Circuit (A, B. C, D. E);
D, O:
A.~, C:
w'\;

and
not
0'

endmod ule

G1 (w1, A, B); /I Optional gate instance name

G2 10 , C):
G3 (0, w1, E);

The pon \iMof a module is the interface between the module and its environment. In this
example. the ports are the inputs and outputs of the circuit. The logic values of the inputs to
a circuit are determined by the env ironment: the logic values of the outputs are determined
within the circuit and result from the action of the inputs on the circuit. The port list is en­
closed in parentheses. and commas are used 10separate elements of the list. The statement
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is terminated with a semicolon (;) . In our examples , all keywords (which must be in lower­
case) are printed in bold for clarit y. but that is not a requirement of the language . Next. the
ke ywords input and output specify whic h of the ports are inputs and which are outputs. In­
tern al connections are declared as wire s. The circuit in this exa mple has one internal con­
nection. at terminal wi , and is dec lared with the keyword wire . The structure of the circuit
is specified by a list of (predefined) primitive gates, each identified by a descri ptive key­
word (a nd , not, or). The elements of the list are refe rred to as instant iations of a gate, each
of which is re ferred to as a gate instance. Eac h gate instant iat ion consists of an optional
name (such as OJ, 02. etc.) followed by the gate output and inputs separated by commas and
enclos ed in parentheses. The outpu t of a primitive gate is always listed first. followed by
the inputs. For example. the OR gate of the schematic is represented by the or primitive. is
named 0 3, and has output D and inputs wl and E. (Note; The output of a primitiv e must be
listed first. but the inputs and outputs of a modu le may be listed in any orde r.) The mod ule
description ends with the keyword end module. Each state ment must be terminated with a
semico lon. but there is no semico lon afte r endmod ule.

It is important to understand the distinc tion betwee n the tenus declaration and instantiation.
A Verilog module is declared. Its declaration specifics the input-output behavior of the hard­
ware that it represents. Predefi ned primitives are not declared, because their definition is spec­
ified by the languag e and is not subject to change by the user. Primit ives are used (i .e.,
instantiared j. just as gates are used to populate a printed circuit board. We' ll see that once a mod­
ule has been declared. it may be used (instant iated) within a design . Note that Simple_Cirellit
is not a computational model like those developed in an ord inary programm ing language: The
sequential ordering of the statements in the model does not specify a sequence of computations.
A verilog model is a descriptive model. SimpleCircuit describes what primi tives form a cir­
cuit and how they are connected. The input-output behavior of the circuit is implicitly speci­
fied by the descr iption beca use the behavior of each logic gale is defined. Thus. an HDL-based
model can be used to simulate the circuit that it represen ts.

Gate Delay s

All physical circuits exhibit a propagation delay between the transition of an input and a resulting
transition of an outp ut. When an HDL mode l of a circuit is simulated. it is sometimes neces­
sary to specify the amou nt of delay from the input to the output of its gates. In Verilog. the prop­
agation delay of a gate is specified in terms of time units and is specified by the symbol N.The
numbers assoc iated with time delays in Verilog are dimens ionless. The associa tion of a time
unit with physica l time is made with the ' timesca le compiler direct ive . (Compiler direct ives
start with the (') back quote. or grave accent, symbol.) Such a direct ive is specified before the
declaration of a modu le and applies to all numerical values of time in the code that follows. An
example of a timesca le direc tive is

t imescale 1ns /100ps

The first number specifies the unit of measureme nt for time delays. The second number spec­
ifies the precision for which the delays are rounded off in this case to 0.1 ns. If no timescale
is specified. a simulator may display d imensionless values or default to a certain time unit.
usually I ns (= 10- 9 sec ). Our examples will use only the default time unit.
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Table 3 .6
Output of Catn otter CH1o'l

Tlme Units
In pu t Out pu t

(ns) ABC Ewl D

Initial 0 00 I 0 1
(lunge 111 I 0 1

10 11 1 0 0 1
' 0 1 11 0 0 1
30 1 1 1 0 I 0

'" 1 1 1 0 I 0
'0 111 0 I 1

HO L Exa mp le 3.2 repeats the descri pt ion of the simple circ uit of Example 3. 1. bu t with
propag ation de lays specified fo r eac h gate. The and . or. and not gules have a time de lay of30.
20. and 10 ns. respect ively . If the c ircu it is simulated and the inputs c hange from A. H. C = 0
to A. B. C = I. the outputs cha nge ax show n in Tab le 3.b (calculated by hand o r gene rated by a
simu lator). The output o f the inverter at E changes from I to 0 a fter a 1000s delay. The output of
the AND gate at w] changes from 0 to I after a ]()..ns delay. The ou tput of the OR gate at D
chan ges from 1 to 0 at , = 30 n,; and then changes bacl.: to I at , = 50 ns. In bo th cases. the
change in the output of theOR ga le resultsfrom a change in ib inputs 20 ns earl ier. It is clear from
this result tha t although output D e\'emually returns to a final value of I after the inpul changes.
thega te del ays produce a negative spike thatlasts 20 ns before the final value is reecbed

HOL Exam ple 3.2 (Gale. le\'el model with prop !dJ:,3Iion dela) sl

II Verilog model of simple circuit with propagation delay

modu le Simple_Circuityrop_delay IA. B. C. D. E);
output D. E;
inpu t A, S, C;
wire wt :

and
not
0 '
endmod ule

#(30) Gl (w1, A, BI:
#(' 0) G2 (E, CI:
#(20 ) G3 (D, w1 , E):

In o rder to simulate a circ uit with an HDL. it is nece ssary to ap ply inpu ts 10 the circ uit so
that the simulator wi ll generate a n ou tput response. An HDL description tha t pro vides the stim­
ulu s to a design is ca lled a test bench. 111e writing of test benc hes is ex plai ned in more de tai l
at the end of Section ~ . 12 . Here. we demonstrate the procedure with a simple example wi th­
out dwelling on 100 man y detail s . l lD L Example 3.3 shows a test bench for simulating the ci r­
c uit with del ay. (Note the di stin gu ishi ng name Simpft'_Cirn lit-prop_Jelay.) In its sim plest
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form. a test bench is a modu le containing a signal genera tor and an instantiation of the model
that is to be verified. Note that the test bench (cSimple_Ci rcuit..]Jrop_deJay ) has no input or
output ports. because it does not interact with its enviro nment. In general , we prefe r to name
the test bench with the prefix C concatena ted with the name of the module that is to be tested
by the test bench, but that choice is left to the designe r. Within the test bench. the inputs to the
circuit are dec lared with keyword reg and the outputs are declared with the keyword wire. The
module Simple_Ci rcuit..]Jrop_delay is instantiated with the instance name M I. Every instan­
tiation of a module must include a unique instance name. Note that using a test bench is sim­
ilar to testing actual hardware by attaching signal generators to the inputs of a circuit and
attaching probe s (wires) to the outputs of the circuit. (The interaction between the signal gen­
erators of the stimulus module and the instantiated circuit mod ule is illustrated in Fig. 4.33.)

HDL Exa m ple 3.3

1/ Test bench for Simple_Circu it...prop_delay

module t_Simple_Circuit""prop_de lay;
wire D, E;
reg A, B, C;

Simple_Circuit""prop_de lay M1 (A, B, C, D, E); II Instance name required

Initial
beg in

A = 1'bO; B = 1'bO; C = 1'bO;
#100 A = 1'b 1; B = 1'b1; C = 1'b1;

end

Initial #200 $f1nlsh;
endmodule

Hardware signal generators are not used to verify an HDL model : The entire simulation ex­
ercise is done with software models executing on a digital computer. Thewaveforms of the input
signals are abstractly modeled (generated) by Verilog statements specifying waveform values
and transitions. The initial keyword is used with a set of statements that begin executing when
the simulation is initialized; initial terminates execution when the last statement has finished
executing. initial statements are commonly used to describe waveforms in a test bench. The
set of statements to be executed is called a block statement and consists of several statements
enclosed by the keywords begin and end . The action specified by the statements begins when
the simulation is launched, and the statements are executed in sequence , from top to bottom.
by a simulator in orde r to provide the input to the circuit. Initial ly, A. B, C = O. (A, S , and C
are each set to I 'bO, which signifies one binary digit with a value of 0.) After 100 ns, the in­
puts change to A. B. C = 1. After another 100 ns, the simulation termi nates at time 200 ns. A
second initial statement uses the Sfinlsh system task to specify termination of the simulation.
If a statement is preceded by a delay value (e.g., # 100). the simulator postpones executing the
statement until the specified time delay has elapsed. The timing diagram of waveforms that result
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O.O n~ 5S.0 ns usn n~ 174.0 n~
, ame ,
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E ---J

FIGURE 3.38
Simulation output of HDl Example 3.3

from the simulation is shown in Figure 3.38. The total simulation takes 200 ns. The inputs A,
B. and C change from 0 10 I after lOO ns. Output J:: is unknown for the first IOns (denoted by
shading).and output D is unknown for the first 30 ns. Output E goe s from J to 0 at 110 ns. Our­
put D goes from I to 0 at 130 ns and back 10 1 at 150 ns. just as we predicted in Table 3.6.

Boolean Expressions

Boolean equations desc ribing combina tionallogic are spec ified in Verilog with a continuous
a.ssignment statement consisling of the keyword 1Is..'i I~n followed by a Boolean expression. To
distinguish arithmetic operators from logical operators. veruog u-.e 'i. the symbols (&), (I ), and
(- ) for AND. OR. and NOT (complement). respectively. Thus. 10 describe the simple circuit
of Fig. 3.37 with a Boolean expre....ion. we U~ the ..tatemenr

ass ign D ~ (A & B jl-c:
HDL Example 3Adesc ribes a circuit that is specified with the following two Boolean expres..ions :

E = A + BC + B 'D

F=B ' C+ BC' D '

The equations specify how the logic values £ and F are determined by the values of A. B. C.
and D.

IIDL Exampl~ 3.4 (Cllmbinational logil' mod"h.'d wilh Buolean equations)

1/Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E. F, A, B, C, 0 );
output E, F;
Input A, B, C, 0 ;

. sslgn E =AI (B & C) I (- B & D);
ass ign F =(- B & c) I (B & -C & -0);

endmod ule
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The circuit has two outputs E and F and four inputs A, B, C, and D. The two assign state­
ments describe the Boolean equations. Tbe values of E and F duri ng simulation are determined
dynamically by the valuesof A. B. C. and D. The simulator detect s when the test bench changes
a value of one or more of the inputs, When this happen s. the simulator updates the valuesof E
and F. 1be continuous assignme nt mechanism is so named beca use the relationship between
the assigned value and the variables is permanent. The mechanism acts just like combination­
al logic. has a gate-leve l equivalent circuit. and is referred to as implicit combinational logic.

We have shown that a digital circuit can be described with HDL state ments. just as it can
bedrawn in a circuit diagram or specified with a Boo lean expressio n. A third alte rna tive is to
describe combina tional logic with a truth tab le.

User-Defined Primitives

The logic gale s used in Verilog descri ptions with keywords a nd. or . etc., are defined by the sys­
tem and are referred to as system primitives. (Caution: Other languages may use these words
differently,) The user can create additional primitives by defining them in tabular form. Th ese
types of circuits are referre d to as user-defined primitives (UDPs). One way of spec ifying a dig­
ital ci rcuit in tabular form is by means of a truth table. UDP desc riptio ns do not use the key­
word pair module . . . endmodule. Instead , they are declared with the keyword pair primitive
. . . endprlmluve. Th e best way to demonstrate a UDP declarat ion is by means of an e xample.

HDL Exampl e 3.5 defines a UDP with a truth table . It proceeds according to the following
gene ral rules:

• It is declared with the keyword primitiv e. followed by a name and port list.

• There can beonly one output. and it must be listed first in the port list and dec lared with
keyword output.

• There can be any number of inputs. Tbe order in which they are listed in the Inpul
declaration must conform to the order in which they are gin n values in the table that
follows.

• The truth table is enclosed within the keywords table and endtable .

• The values of the inputs are listed in order. ending with a co lon (:). The output is always
the last entry in a row and Is followed by a semicolon (:).

• The declaration of a UDP end s with the keywo rd endprfmttive.

Note that the variables listed on top of the table are part of a comment and are shown only
for clari ty. The sys tem recognizes the variables by the order in whic h they are listed in the
input declaration. A user-defi ned primitive can be instantiated in the cons truct io n of other mod ­
ule!'> (dig ital circuits), just as the system primitiyes are used. For example. the declaration

Circuit_with_UDP_02467 (E. F, A, B, C, D);

will prod uce a circuit that impleme nts the hardware show n in Figure 3.39.
Although Verilog lI DL uses thi s kind of de scrip tion for UDPs only, o ther HD Ls and

computer-aided design (CAD) systems use other procedures to specify digital circ uits in tab­
ular form . The table s can be processed by CAD software to derive an efficient gate suuc­
lure of the design . None of Veri log 's predefined primitives describes seq uential logic. The
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flDL Example 3.5

II Verilog model : User-defined Primitive

primit ive UOP_02467 (0 , A. B. C);
output 0 ;
Input A, B, C;

11 Truth table for 0 :: t (A, B. C):: ! (0. 2, 4, 6, 7);
table

II ABC 0 11 Column header comment
a 0 0 1;
o 0 1 0;
o 1 0 1;
o 1 1 0 ;

1 0 0 1;
1 0 1 0;

1 1 ° t :
1 1 1 1;

endtable
endprlmruve

11 Instantiate primitive

1/Verilog model: Circuit instantiation of CircuiCUDP_02467

mod ule Circuit_wlth_UDP_02467 (e, I, a. b, c. d l:
output e. t:
input a, b, c. d:

UDP_02467
and

endmod ule

(e. e. b ,C):
(t . e. dl; 1/Option gate instance name ormrted

FIGURE ) ,)9
Schematk fo r Cirtu lt with _UDP_D1461
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model o f a sequential UOP requires tha t its output be decl ared as a reg data type. and that
a column be adde d 10 the truth tab le to descri be the next state. So the co lumns are organ­
izes as inputs : state : next state.

In this section. we introduced the Verilog HOL and presented simple examples 10 illustrate
alterna tives for mode ling combinational logic. A more detai led presentation of Verilog HOL
can befound in the next chapter,The reader familiar with combinational circu its can go directly
to Section 4.12 to continue with this subject.

PROBLEMS

Answers to problems marked with '" appear al the end of the book.

3 .1 '" Simplify the following Boolean functions. using three-variable maps:
(a) F(x , y, : ) - ~ (O,2,6. 7 ) (b) F(x, y, : ) - ~ (O.2. 3,4,6)

(e) r t «. y.:) - :E(O, 1. 2. 3. 7) (d) F(x. y. : ) .. :E (3, 5. 6, 7)

3 .2 Simplify the following Boolean functions, using three-variable maps:
(3)'" F(x, )'• c) IS I (O, I. S. 7) (br F(x, y, .::) "" :E ( I. 2. 3, 6, 7)
(e) r i«. ,',.::) - I(O. 1, 6. 7) (d ) F(x, y,: ) ~ I (O, 1. 3,4,05 )
(e) F(x, ,'. c) - I (I .3,S, 7) (0 F( x, y. : ) ~ I(I,4,S,6, 7)

3.3'" Simplify the following Boolean expressions, using three-variable maps:
(ar F(x,y,l) - X) ' + x'y' : ' + x'y: ' (b)'" F(x.)'.: ) "" .f'y' + yz + x'y: '
(c)'" F(x, y,:) "" x'y + r a' + y'.::' (d) F(x, y.:) '"' xyz + x'y'.:: + xy' .::'

3.4 Simplify the following Boolean functions, using Kamaugb maps:
(a )'" F(x, y, .z: ) - I (2, 3. 6, 7) (b)'" F(A . B, C. D) :; I(4. 6, 7, 15)
(c )'" F(A. B, C, D) ". I (3, 7. I I. 13. 14, 15) (d)'"F(w, x, y• .::) :; :E (2, 3, 12, 13, \4, 15)
(e) F(w• .t , ,". l ) "" ~ ( 1. 4.5,6. 7. 13 ) (0 F (w, x. y• .::) - I (0. I.S.8.9)

3 .5 Simplify the following Boolean functions. using four-variable maps:
(a)· F(w. x, y. .:: ) '" :E ( I, 4. 05 , 6, 12. \4 , 15)
(b) F(A ,B. C. D) :; :E (1.5, 9. 10. 11. 14. IS)
(e) F(w.x, y• .:: ) "* I (O, 1. 4. 5, 6. 7. 8. 9)
(d )'" F(A. . B, C, D) :; I (O. 2. 4. S. 6. 7. 8. 10. 13. IS)

3.6 Simplify the following Boolean expressions, using four-variable maps:
(arA'B'C'D' + AC' D' + B'CD' + A' BCD + BC'D
(b )'" x'e + w'xy' + w(x'y + xy' )
(e) A'B 'C'D' + A'CD' + AB'D ' + ABeD + A'BD
(d ) A'B 'C'D' + AB'C + B'CD' + ABCD' + BC'D

3.7 Simplify the following Boolean expressions, using four-variable maps:
(a)'" w' ::: + xz + X' )' + WX' l
(b) C' D + A' B'C + ABC' + AB'C
(e)'"AB'C + B'C' O' + BCD + ACD' + A'B 'C + A'HC' D
(d ) x)"t. + Ill)' + wxy' + x' )'

3.8 Find the minterms of the following Boolean expressions by first plouing each function in a map:
(ar X)' + rz + XY'l (b)'" C 'V + ABC' + ABD' + A'B 'D
~ ~ + ~x' +~.:: ' MA'B +A~ + 8'CD +~D'
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1.9 Find all the prime implicants for the follow ing Boo lean functions. and determine which are es­
sential:
(a)· F(w• .r. y.~ ) '" ! (O. 2. 4. 5. 6, 7. 8. 10. 13. 15)
lb,· F(A. B. C. D) = l t~. 2. 3. 5. 7. 8. 10. I I. I• . 15)
(e) F(A .8.C,0) '" ~(I . 3 . 4.5 . IO. II . 1 2 . 1 3 . 1 4, 15)
(d) F(w. .r. y.~) '" ~ (I . 3. 6. 7. 8, 9. 12.13 . 14. 1.5 )
( e) F(A. B. C,D) '" ~ (O. 2 . 3.5 . 7.8. 10. 11, 13. 15)
(0 F(w. ,t. y.;: ) '" ! (D.2. 7.8.9, 10. 12, 13. 14, 15)

1.10 Simplif)"the following Boolean functions by first finding the essential prime implicams:
(a) F(w. .r, y.:: ) '" I (D. 2, 4. 5. 6, 7. 8. 10. 13.1 5)
(b) F( A. 8 . C. D ) "" sro,2. 3. 5. 7. 8. 10. I I. 14. 15)
(CI* F(A . B. C. D ) :: ! ( 1. 3.4. 5. 10. II . 12. 13. 14, 15)
(d) F(w. "t. )". ~ ) "" ! ( 1. 3. 6. 7. 8, 9. 12. 13. 14. 15)
(e) F(A . B. C. D ) '" ! (O. 2. 3. 5. 7. 8.1 0. I I. 13. 1.5 )
(fJ F(" '. .r. y. ;:) '" ! (O. 2. 7. 8. 9.10. 12. 13.14. IS)

1.11 Simplify the following Boolean functions. using five-variab le maps:
( a )" F(A . B. C. D. E ) '" ! (o. 1.4. 5.1 6. 11. 21. 25. 29 )
(b) F(A.B.C.D) = A'B 'Ct: ' + B'C' D' E' + A' B'O' + B'CD ' + A'CD + A' BD

1 .12 Simplify the following Boolean functions to product-of-sums form:
(a) F(w• .r , y.::) .. ~ (o. I. 2. 5. 8. 10. 13)
lb,· F(A. B. e. D) = n (I . 3. 5. 7. 13. 15)
le i F(A.B.C.D) = n (1.3. 6. 9. 11.12. 1.)

1.13 Simplify the following expressions to ( I) sum-of-products and ( 2) products-or-sums:
( a )* x ';:' + y'.::' + y:' + xy

(b) ACD' + C' D + AB' + ABeD
(cl (A + C' + O' )(A ' + B' + O' )(A ' + B + D' )(A' + B + C' )
( d ) ABC' + AB'O + BCD

3 .14 Give three possible ways (Q express the following Boolean function with eig ht or fewer literals:

F R HT ' D' + AB'CD ' + BC'D + A'RCD

3 ,1 S Simplify the follcwlng Boolean function F. together with the do n't -care co ndit ions d, and then
expre ss the simplified function in sum-of-mime nns form :
(a) F(.t . y. ~) ::::: ~ (2 . 3. 4. 6. 7) (b)* F( A. B. c' D ) := ~ (O. 6. 8. 13. 14)

dlx, " . , ) ~ ~(O. 1. 5) d(A. fl . e. D) e l (U . 10)
(e) F(A .B.C.D) = ! (4.5 . 7. 12. 13. 14) (d) F (A.B. e , D ) "" };( 1.3,8. 10, 15)

d(A.B. e.D ) e l (1,9.1 1.l5) d(A. B. e. D ) = l (0.2.9)

3 .16 Simplify the following functions. and implement them with two-level NAND gate circuits:
(a) F( A. B. c'D) "" A' B'C + AC' .. Ae D + AeD ' + A' B' D'
(b) F(A . B.C. D ) = AB + A'Be + A' RT 'D
(e) F(A . B,C) = (A' + B' + C'H A' + B' )( A' + C' )
(dJ F(A , B.C. D ) '" A'B + A + C' + 0 '

3 .1 7* Draw a NAND logic diag ram that implements the complement of the following function:

F(A . B. C, D) "" };(O, I. 2. 3, 4. 8. 9. 12)
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3.18 Draw a logic diagram using only two- input NOR gates to implement the following function;

F(A. B. C.D) c (A <!l B)" (C<!l D)

3.19 Simplify the following functions , and implement them with two-level NOR gate circuits:
(a)+ F zo wx ' + y' ~' + w' yz '
(b) F(w. x, y, z) "" ~ ( I , 2, 13, 14)
(c) F (x , )'o t) - [(x + )')(x' + t ))'

3.20 Draw the multi-level !'\OR and multi-leve l NAND circ uits for the following expression:

( AB' + CD' )E + BC(A + B)

3.21 Draw the multi-level NAN D circuit for the follow ing expression:

w(x + y + z) + xyz

3 _22 Convert the logic d iagram of the circuit shown in Fig. 4 .4 into a multiple-level NAND circ uit.

3.23 Implement the follow ing Boolean function F, together with the don't-care conditions d, using no
more than two NOR gate s:

F(A , B. C. D ) = I (2. 4, 6. 10, 12)

d(A. B. C. D) • I(O. 8, 9. 13)

Assume that both the normal and complement inputs are available.

3.24 Implement the following Boo lean function F, using the two-le vel forms of logic (a ) NAND­
AND, (b) AND-NOR, (c) O R-NAr\D, and (d) NOR-OR:

F( A, B, C, D } = I (O,4.8.9, 10, 11, 12, 14)

3.25 List the eight dege nerate two-level form s and show that they reduce to a single opera tion. Explain
how the degenerate two-level fonns can be used to extend the number of inputs to a gate.

3.26 With the use of maps, find the simplest sum-of-products fonn of the function F "" Is ,where

I "" abc' + cd + a'cd' + b'cd'

g = (a + b + c' + d ' )(b ' + c' + d )(a' + c + d' )

3.27 Show that the dual of the excl usive-OR is also its complement.

3 ,28 Derive the circuits for a thre e-bit parity generator and four -bit parity checke r using an odd
parity bit.

3.29 Implement the following four Boolean expressions with three half adders

D ". Ae BffiC

E '" A' BC + AB 'C

F = ABC' + (A' + B' )C

G = ABC

3.30'l' Implement the following Boo lean expression with exclusive-O R and AND gates:

F = AB'CD' + A' BCD' + AB'C'D + A'BC 'D
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1.11 Write a Venlo~ gure-tevet deccripnon of the circuit shown in
la) Fig. 3.111al tn l Fi~ . 3.1 2(bl (' I Fig. 3.23(a )
(d l Fig. ~.1~l n) Ie) Fig. 3.16 (f l ri g. 3.27

1.12 Using conun uouv uxsignmer nstatements. write a Verill1g dcscnprio n of the circ un shown in
(a ) Fig. 3.22(al Ib ) Fig. 3.21(bl lei Fig. 3.2313)
(dJ h g. 3.23(hl ret Fig. 3.26 10 Fig. 3.27

1.11 The exclusive-OR circuit of Fig. 3.32(3) has gate, with a delay of ~ ns for an inverter. a ~ ns
dela y for an AND gale. and a HI ns dela y for an OR gate. The input of the circ uit goes from
l ,\' '" 00 10 .t .\' '" 0 1.
(a ) Determine lhe signals ,It the OUIPUI of each g.llc from 1 "" 0 to t = 50 ns.
Ih ) Write a vcnl og gate -level description uf the ci rcuit. including the dela ys.
te l Write a stim ulus module (i.e .• a IcMbench similar to Hm.Example 3.] ). and simulate the cir­

cuu to verify the answer in pan (a).

1 .M Using continuous a ss ignmcnt ~ , write a Verilog desc npno n of the circuit specified by the follow.
ing Boolean functions:

Oll/_l "" (C + 8 )(A ' + I>}8 '

0 11 /_2 =' (C R' + ABC + C' B )(A + lJ ' )

0 11I_3 "" C( AD + R) + SA '

Write a test bench and simulate the circuit'sbeha vior.

l ,lS· Find the synta x errors in rhc follu..... ing declarat ions (note that names for prim itive gates are
oprionalj:

module Exmpl·3(A, B, C. D. F)
inputs A. B. C . Ou tpu t 0 , F,

output B
a nd g l (A. B. 0);

not (0 , A, C),
OR (F, B; CI;

e ndofmod u le ;

1/Line 1
1/Line 2

1/Line 3
1/Line 4

1/Line 5
I/ line 6
1/Line 7

1.16 Draw the logic diagram of (he digi tal ci rcuit specified by the follow ing Ven log descri pnon :

la l m odule CircuiCA (A, B, C . 0 , F);

Input A, B. C, D;
output F;
wire w, x. y. z. a , d;
and (x. B. C , d) ;

and (y, a ,C );
a nd (w , Z ,8 );

or (z . y, A);

o r (F, x. w);
not (a , A);

not (d, D);

endmodule
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(b) module Circull_B (A-fjtB, AJtB, A_eqB, AD,A1, BO, Bl );
output A-fjIB , AJ IB, A_eqB;
Input AD, Al , BO, B1;
nor (A_gIB, A_ ItS, A_eQB);
or (AJ tB, w1, w2, w3);
and (A_eq B, w4 , w5);
and (wt. w6, B1);
and (w2, '0'.'6, w7, BO);
and (w3, w7, 80, Bl );
not (w6, A1);
not (w7, AD);
xnor (w4,A1, B1);
xnor (w5, AD, 80);

endmedule

(c) modu le CircuiCC (output y1, Input a, b, output y2);
assi gn y1 :: a & b:
or (y2, a, b);

endmodule

3 .37 A majority logic function is a Boolean functioo thai is equal to 1 if the majority of the variables
are equal 10 I , equal 10 0 otherwise. Write a Verilog user-defined primitive for a four-bit majori­
ty function.

3 .38 Simulate the behavior of CircuiU,>'ith_UDP_02467, using the stimulus waveforms shown in
Fig. P3.38.

AI
i I I I I I I t , ns

10 20 30 40 30 60 70 80

·1
I I I t. ns

10 20 30 ., 30 60 70 80

cl
I t, ns

10 20 30 40 50 60 7. 80

FIGURE P3 .38
Stimulus waveforms fo r Probl em 3.38
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